目录
一、什么是POSIX
1. 概念
POSIX:可移植操作系统接口(Portable Operating System Interface of UNIX,缩写为 POSIX ),
2. 发布者-IEEE
发布者为电气与电子工程师协会(Institute of Electrical and Electronics Engineers),简称IEEE。这个协会老牛了【该组织在太空、计算机、电信、生物医学、电力及消费性电子产品等领域中都是主要的权威】!
POSIX是IEEE为要在各种UNIX操作系统上运行的软件而定义的一系列
API标准的总称
,其正式称呼为IEEE 1003,而国际标准名称为ISO/IEC 9945。
POSIX.1 已经被国际标准化组织(International Standards Organization,ISO)所接受,被命名为 ISO/IEC 9945-1:1990 标准。
IEEE,总部位于美国纽约,是一个国际性的电子技术与信息科学工程师的协会,也是目前全球最大的非营利性专业技术学会。IEEE致力于电气、电子、计算机工程和与科学有关的领域的开发和研究,在太空、计算机、电信、生物医学、电力及消费性电子产品等领域已制定了1300多个行业标准,现已发展成为具有较大影响力的国际学术组织。
3. POSIX标准下载
主页:http://blog.csdn.net/ablo_zhou
很多人听说了POSIX标准,但标准具体长什么样,在哪里下载到,则 不清楚。现在我开放出来,供相关人员使用。
Single UNIX Specification V3,IEEE Std 1003.1,2004 Edition
标准线上地址:http://www.unix.org/version3/online.html注册后可以在线阅读或者下载。
IEEE和Open Group 的POSIX认证:http://www.opengroup.org/certification/idx/posix.html
相关页面:http://www.unix.org/version3/ieee_std.html
二、POSIX历史
1. 起源
POSIX是Unix的标准。
1974年,贝尔实验室正式对外发布Unix。因为涉及到反垄断等各种原因,加上早期的Unix不够完善,于是贝尔实验室以慷慨的条件向学校提供源代码,所以Unix在大专院校里获得了很多支持并得以持续发展。
于是出现了好些独立开发的与Unix基本兼容但又不完全兼容的OS,通称Unix-like OS。
包括:
-
美国加州大学伯克利分校的Unix4.xBSD(Berkeley Software Distribution)。
-
贝尔实验室发布的自己的版本,称为System V Unix。
-
其他厂商的版本,比如Sun Microsystems的Solaris系统,则是从这些原始的BSD和System V版本中衍生而来。
20世纪80年代中期,Unix厂商试图通过加入新的、往往不兼容的特性来使它们的程序与众不同。
局面非常混乱,麻烦也就随之而来了。
为了提高兼容性和应用程序的可移植性,阻止这种趋势, IEEE(电气和电子工程师协会)开始努力标准化Unix的开发,后来由 Richard Stallman命名为“Posix”。
这套标准涵盖了很多方面,比如Unix系统调用的C语言接口、shell程序和工具、线程及网络编程。
2.
谁遵循这个标准呢?
首先就是大名鼎鼎的Unix和Linux了,除此之外还有苹果的操作系统也是Unix-based的。有了这个规范,你就可以调用通用的API了,Linux提供的POSIX系统调用在Unix上也能执行,因此学习Linux的底层接口最好就是理解POSIX标准。
Windows从WinNT开始就有兼容POSIX的考虑。这是因为当年在要求严格的领域,Unix地位比Windows高。为了把Unix用户拉到Windows阵营,被迫支持POSIX。
现在Win10对 Linux/POSIX 支持好,则是因为Linux已经统治了廉价服务器市场。为了提高Windows的竞争力搞的。
所以一切都是以市场为主导。
3. 支持POSIX-Linux成功的最重要一个因素
Linux之所以能够成功,有很多因素,但是支持POSIX标准无疑是它能够快速发展的最重要的一个因素。
POSIX 标准的制定最后投票敲定阶段大概是 1991~1993 年间,而此时正是Linux 刚刚起步的时候,这个 UNIX 标准为 Linux 提供了极为重要的信息,使得 Linux 能够在标准的指导下进行开发,并能够与绝大多数 UNIX 操作系统兼容。
在最初的 Linux 内核源码(0.01版、0.11版)中就已经为 Linux 系统与 POSIX 标准的兼容做好了准备工作。
在 Linux 0.01 版内核 /include/unistd.h 文件中就已经定义了几个有关 POSIX 标准要求的符号常数,而且 Linus 在注释中已写道:“OK,这也许是个玩笑,但我正在着手研究它呢”。
正是由于Linux支持POSIX标准,无数可以在unix上运行的程序都陆续的移植到Linux上,而此时unix因为版权问题,官司打的不可开交,使得Linux后来者居上。
三、可移植性
聊到POSIX,那我们就不得不说说到底什么是可移植性,在讲可移植性之前,我们先来了解库函数和系统调用的区别。
Linux下对文件操作有两种方式:系统调用(system call)和库函数调用(Library functions)。
1. 系统调用
系统调用是通向操作系统本身的接口,是面向底层硬件的。通过系统调用,可以使得用户态运行的进程与硬件设备(如CPU、磁盘、打印机等)进行交互,是操作系统留给应用程序的一个接口。
2. 库函数
库函数(Library function)是把函数放到库里,供别人使用的一种方式。
方法是把一些常用到的函数编完放到一个文件里,供不同的人进行调用。一般放在.lib文件中。
库函数调用则是面向应用开发的,库函数可分为两类,
-
一类是C语言标准规定的库函数,
-
一类是编译器特定的库函数。
(由于版权原因,库函数的源代码一般是不可见的,但在头文件中你可以看到它对外的接口)。
glibc 是 Linux 下使用的开源的标准 C 库,它是 GNU 发布的 libc 库,即运行时库。这些基本函数都是被标准化了的,而且这些函数通常都是用汇编直接实现的。
glibc 为程序员提供丰富的 API(Application Programming Interface),这些API都是遵循POSIX标准的,API的函数名,返回值,参数类型等都必须按照POSIX标准来定义。
POSIX兼容也就指定这些接口函数兼容,但是并不管API具体如何实现。
3. 库函数API和系统调用的区别
如上图所示:
-
(1) 库函数是语言或应用程序的一部分,而系统调用是内核提供给应用程序的接口,属于系统的一部分
-
(2) 库函数在用户地址空间执行,系统调用是在内核地址空间执行,库函数运行时间属于用户时间,系统调用属于系统时间,库函数开销较小,系统调用开销较大
-
(3) 系统调用依赖于平台,库函数并不依赖
-
系统调用是为了方便使用操作系统的接口,而库函数则是为了人们编程的方便。
库函数调用与系统无关,不同的系统,调用库函数,库函数会调用不同的底层函数实现,因此可移植性好。
4. 程序的可移植性及其本质
那么目标代码和启动代码是怎么生成的呢?答案是编译器。
编程语言编写的程序首先要被编译器编译成目标代码(0、1代码),然后在目标代码的前面插入启动代码,最终生成了一个完整的程序。
要注意的是,程序中为访问特定设备(如显示器)或者操作系统(如windows xp 的API)的特殊功能而专门编写的部分通常是不能移植的。
综上所述,一个编程语言的可移植性取决于
-
不同平台编译器的数量
-
对特殊硬件或操作系统的依赖性
移植是基于操作系统的。但是这个时候,我们需要注意一点:基于各种操作系统平台不同,应用程序在二进制级别是不能直接移植的。
我们只能在代码层去思考可移植问题,在API层面上由于各个操作系统的命名规范、系统调用等自身原因,在API层面上实现可移植也是不大可能的。
在各个平台下,我们默认C标准库中的函数都是一样的,这样基本可以实现可移植。但是对于C库本身而言,
在各种操作系统平台下其内部实现是完全不同的
,也就是说C库封装了操作系统API在其内部的实现细节。
因此,C语言提供了我们在代码级的可移植性,即这种可移植是通过C语言这个中间层来完成的。
例如在我们的代码中下功夫。以下代码可以帮助我们实现各平台之间的可移植:
#ifdef _WINDOWS_
CreateThread(); //windows下线程的创建
#else
Pthread_create(); //Linux下线程的创建
#endif
对于头文件,也使用同样的预编译宏来实现。如:
#ifndef _WINDOWS_
#include <windows.h>
#else
#include <thread.h>
#endif
这样就可以实现代码的可移植了。在编译的时候只要通过#define就可以选择在那个平台下完成程序的编译。
综上所述,我们都是将C,C++等各种语言当作中间层,以实现其一定程度上的可移植。如今,语言的跨平台的程序都是以这样的方式实现的。但是在不同的平台下,仍需要重新编译。
5. 系统开销
使用系统调用会影响系统的性能,在执行调用时的从用户态切换到内核态,再返回用户态会有系统开销。
为了减少开销,因此需要
减少系统调用的次数
,并且让
每次系统调用尽可能的完成多的任务
。
硬件也会限制对底层系统调用一次所能写的数据块的大小。
为了给设备和文件提供更高层的接口,Linux系统提供了一系列的标准函数库。
使用标准库函数,可以高效的写任意长度的数据块,库函数在数据满足数据块长度要求时安排执行底层系统调用。
一般地,操作系统为了考虑实现的难度和管理的方便,它只提供一少部分的系统调用,这些系统调用一般都是由C和汇编混合编写实现的,其接口用C来定义,而具体的实现则是
汇编
,这样的
好处就是执行效率高
,而且,极大的方便了上层调用。
随着系统提供的这些库函数把系统调用进行封装或者组合,可以实现更多的功能,这样的库函数能够实现一些对内核来说比较复杂的操作。
比如,read()函数根据参数,直接就能读文件,而背后
隐藏的比如文件在硬盘的哪个磁道,哪个扇区,加载到内存的哪个位置等等这些操作
,程序员是不必关心的,这些操作里面自然也包含了系统调用。
而对于第三方的库,它其实和系统库一样,只是它直接利用系统调用的可能性要小一些,而是利用系统提供的API接口来实现功能(API的接口是开放的)。
四、举例
如下图是Linux系统调用的大概流程。
当应用程序调用printf()函数时,printf函数会调用C库中的printf,继而调用C库中的write,C库最后调用内核的write()。
而另一些则不会使用系统调用,比如strlen, strcat, memcpy等。
printf函数执行过程中,程序运行状态切换如下:
用户态–>系统调用–>内核态–>返回用户态
printf函数、glibc库和系统调用在系统中关系图如下:
实例代码如下:
1 #include <stdio.h>
2
3
4 int main(int argc, char **argv)
5 {
6 printf("yikoulinux");
7 return 0;
8 }
编译执行
root@ubuntu:/home/peng/test# gcc 123.c -o run
root@ubuntu:/home/peng/test# strace ./run
如执行结果可知:我们的程序虽然只有一个printf函数,但是在执行过程中,我们前后调用了execve、access、open、fstat、mmap、brk、write等系统调用。其中write系统调用会把字符串:yikoulinux通过设备文件1,发送到驱动,该设备节点对应终端stdout。
【注意】运行程序前加上strace,可以追踪到函数库调用过程。