4个基本不等式的公式高中_4个基本不等式的公式

  • Post author:
  • Post category:其他

高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用

一.基本不等式

1.(1)若 a,b R ,则 a2 b2 2ab (2)若 a,b R ,则 ab a 2 b2(当且仅当 a b 时取“=”)

2

2. (1)若 a, b R* ,则 a b ab 2

(2)若 a, b R* ,则 a b 2 ab (当且仅当 a b 时取“=”)

(3)若 a, b R* ,则 ab a b 2 (当且仅当 a b 时取“=”)

2

3.若 x 0 ,则 x 1 2 (当且仅当 x 1 时取“=”);若 x 0 ,则 x 1 2 (当且仅当 x 1 时取“=”)

x

x

若 x 0 ,则 x 1 2即x 1 2或x 1 -2 (当且仅当 a b 时取“=”)

x

x

x

3.若 ab 0 ,则 a b 2 (当且仅当 a b 时取“=”)

ba

若 ab 0 ,则 a b 2即 a b 2或 a b -2 (当且仅当 a b 时取“=”)

ba

ba

ba

4.若 a,b R ,则 ( a b)2 a2 b2 (当且仅当 a b 时取“=”)

2

2

注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的

积的最小值,正所谓“积定和最小,和定积最大”.

(2)求最值的条件“一正,二定,三取等”

(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.

应用一:求最值

例 1:求下列函数的值域

(1)y=3x 2+21x 2

(2)y=x+1x

解:(1)y=3x 2+21x 2 ≥2 3x 2·2×1 2 = 6 ∴值域为[ 6 ,+∞)

(2)当 x>0 时,y=x+1x ≥2

1 x·x =2;

当 x<0 时, y=x+1x = -(- x-1x )≤-2 ∴值域为(-∞,-2]∪[2,+∞)

解题技巧: 技巧一:凑项

1 x·x =-2

例 1:已知 x 5 ,求函数 y 4x 2 1 的最大值。

4

4x 5

解:因 4x 5 0 ,所以首先要“调整”符号,又 (4x 2)g 1 不是常数,所以对 4x 2 要进行拆、凑项,

2020-04-01

243人浏览


版权声明:本文为weixin_30959723原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。