陶哲轩实分析(上)8.1及习题-Analysis I 8.1

  • Post author:
  • Post category:其他

以我相对平庸的智商来说,Analysis I 的第8章是整本书中相对比较难的章节之一,由于(以个人的理解)这章实际是将集合论和实分析的起步阶段内容都介绍了,但是篇幅又不会展开到实分析教科书的程度,对于第一次接触的人毫无疑问是比较棘手的,我虽然之前接触过实分析,大致能理解countable和uncountable的区别,但是从没有非常仔细的思考过著名的选择公理Axiom of Choice,以及其各种等价结论,还有其应用。这一章提供了一个机会。

本章的习题也是 Analysis I 中数量比较大,难度也挺高的一部分,基本上如果没有hint,都很难做出来。这种熬脑的感觉在第1节还好,在第5节达到了顶峰。

Exercise 8.1.1

First, if there exists a proper subset

Y

X

Y⊊X

YX which has the same cardinality as

X

X

X, then assume

X

X

X is finite, then

Y

Y

Y must be finite. Since

X

=

Y

(

X

\

Y

)

X=Y∩(X\backslash Y)

X=Y(X\Y), we know that

Y

Y

Y and

X

\

Y

X\backslash Y

X\Y are disjoint, further

X

\

Y

X\backslash Y

X\Y is not empty, so

#

(

X

\

Y

)

1

\#(X\backslash Y)≥1

#(X\Y)1, and

#

(

X

)

=

#

(

Y

)

+

#

(

X

\

Y

)

=

#

(

X

)

+

#

(

X

\

Y

)

#

(

X

)

+

1

>

#

(

X

)

\#(X)=\#(Y)+\#(X\backslash Y)=\#(X)+\#(X\backslash Y)≥\#(X)+1>\#(X)

#(X)=#(Y)+#(X\Y)=#(X)+#(X\Y)#(X)+1>#(X)
which is a contradiction.
On the contrary, if

X

X

X is infinite, then we can form a set

S

S

S like this:
Choose

x

X

∀x∈X

xX, rename it

x

0

x_0

x0 and let

S

0

=

{

x

0

}

S_0=\{x_0 \}

S0={x0}, then choose any element belongs to

X

\

S

0

X\backslash S_0

X\S0, and rename it

x

1

x_1

x1, then let

S

1

=

S

0

{

x

1

}

S_1=S_0∪\{x_1 \}

S1=S0{x1}. This process shall never stop, since

X

X

X is infinite and we have the Axiom of Choice. Doing this recursively, we can eventually get a set

S

S

S (by letting

n

n→∞

n), obviously

S

X

S⊆X

SX.
We let

Y

=

X

\

{

x

0

}

Y=X\backslash \{x_0\}

Y=X\{x0}, then

Y

Y

Y is a proper subset of

X

X

X. For any

x

X

x∈X

xX, either

x

S

x∈S

xS or

x

X

\

S

x∈X\backslash S

xX\S, thus we define a function

f

f

f from

X

X

X to

Y

Y

Y as follows:

f

(

x

)

=

{

x

n

+

1

,

x

=

x

n

S

x

,

x

X

\

S

f(x)=\begin{cases}x_{n+1},&x=x_n∈S\\x,&x∈X\backslash S \end{cases}

f(x)={xn+1,x,x=xnSxX\S
It’s easy to show that

f

f

f is a bijection.

Exercise 8.1.2

For the sake of contradiction we assume Proposition 8.1.4 is false, then there’s a nonempty set

X

N

X⊆\mathbf N

XN, such that for any

n

X

n∈X

nX, there exists one

m

X

m∈X

mX s.t.

m

<

n

m<n

m<n.
Since

X

X≠∅

X=, we choose

x

X

x∈X

xX, and let

x

=

a

0

x=a_0

x=a0, by our assumption, we can find an element

a

1

X

,

a

1

<

x

=

a

0

a_1∈X,a_1<x=a_0

a1X,a1<x=a0, once we find

a

n

a_n

an, we can by assumption find an element

a

n

+

1

X

a_{n+1}∈X

an+1X such that

a

n

+

1

<

a

n

a_{n+1}<a_n

an+1<an, thus we build a infinite descent sequence

(

a

n

)

n

=

0

(a_n )_{n=0}^∞

(an)n=0 of natural numbers, this contradicts the principle of infinite descent.
If we replace the natural numbers by the integers, then the well-ordering principle doesn’t work. For example the set

X

=

{

1

,

2

,

3

,

}

X=\{-1,-2,-3,…\}

X={1,2,3,} doesn’t have a minimum element.
If we replace the natural numbers by the positive rationals, then the well-ordering principle doesn’t work. For example the set

X

=

{

q

Q

:

q

>

0

}

X=\{q∈\mathbf Q:q>0\}

X={qQ:q>0} doesn’t have a minimum element.

Exercise 8.1.3

I will prove this Proposition in a complete manner.
Recursively define a sequence of natural numbers

a

0

,

a

1

,

a

2

,

a_0,a_1,a_2,…

a0,a1,a2, using the formula below:

a

n

min

{

x

X

:

m

<

n

,

x

a

m

}

a_n≔\min \{x∈X:∀m<n,x≠a_m \}

an:=min{xX:m<n,x=am}
Since

X

X

X is infinite, the set

{

x

X

:

m

<

n

,

x

a

m

}

\{x∈X:∀m<n,x≠a_m \}

{xX:m<n,x=am} should also be infinite, assume not, then for some n this set is finite, and

{

a

0

,

a

1

,

,

a

n

1

}

\{a_0,a_1,…,a_{n-1} \}

{a0,a1,,an1} is finite, by

X

=

{

x

X

:

m

<

n

,

x

a

m

}

{

a

0

,

a

1

,

,

a

n

1

}

X=\{x∈X:∀m<n,x≠a_m \}∪\{a_0,a_1,…,a_{n-1} \}

X={xX:m<n,x=am}{a0,a1,,an1}
We deduce

X

X

X is finite, which is a contradiction.
Since

{

x

X

:

m

<

n

,

x

a

m

}

\{x∈X:∀m<n,x≠a_m \}

{xX:m<n,x=am} is infinite, it’s not empty for every

n

n

n, so we can successfully define

min

{

x

X

:

m

<

n

,

x

a

m

}

\min⁡\{x∈X:∀m<n,x≠a_m \}

min{xX:m<n,x=am} by the well-ordering principle.
For

n

∀n

n, we know that

a

n

+

1

min

{

x

X

:

m

<

n

+

1

,

x

a

m

}

a_{n+1}≔\min⁡\{x∈X:∀m<n+1,x≠a_m \}

an+1:=min{xX:m<n+1,x=am}
By the definition of

a

n

+

1

a_{n+1}

an+1 we can see

a

n

+

1

a

n

a_{n+1}≠a_n

an+1=an and

a

n

+

1

{

x

X

:

m

<

n

,

x

a

m

}

a_{n+1}∈\{x∈X:∀m<n,x≠a_m \}

an+1{xX:m<n,x=am}, since

a

n

min

{

x

X

:

m

<

n

,

x

a

m

}

a_n≔\min⁡\{x∈X:∀m<n,x≠a_m \}

an:=min{xX:m<n,x=am}, we can deduce

a

n

<

a

n

+

1

,

n

a_n<a_{n+1},∀n

an<an+1,n. Thus

a

0

<

a

1

<

a

2

<

a_0<a_1<a_2<⋯

a0<a1<a2<
Which means for all

n

m

,

a

n

a

m

n≠m,a_n≠a_m

n=m,an=am, otherwise we would get

a

n

<

a

n

a_n<a_n

an<an or

a

m

<

a

m

a_m<a_m

am<am. Also we know by the definition of

min

(

X

)

,

a

n

X

,

n

\min⁡(X), a_n∈X,∀n

min(X),anX,n.
Now we define

f

:

N

X

f:\mathbf N→X

f:NX by

f

(

n

)

a

n

f(n)≔a_n

f(n):=an, we already show

f

f

f is 1-to-1. To prove

f

f

f is surjective, choose

x

X

x∈X

xX, assume no

n

n

n can let

f

(

n

)

=

x

f(n)=x

f(n)=x, then this means

a

n

x

,

n

a_n≠x,∀n

an=x,n, so for every

n

,

x

{

x

X

:

m

<

n

,

x

a

m

}

n, x∈\{x∈X:∀m<n,x≠a_m \}

n,x{xX:m<n,x=am}, thus

x

a

n

,

n

x≥a_n,∀n

xan,n. As

(

a

n

)

n

=

0

(a_n )_{n=0}^∞

(an)n=0 is an increasing sequence in natural numbers, we can prove by induction that

a

n

n

a_n≥n

ann, thus

x

n

x≥n

xn for every

n

n

n, we can then deduce

x

x

+

1

x≥x+1

xx+1 and get a contradiction. So

f

f

f is surjective, thus bijective.
Last, we assume there’s another increasing bijective

g

:

N

X

,

g

f

g:\mathbf N→X,g≠f

g:NX,g=f, then

{

n

N

:

g

(

n

)

f

(

n

)

}

\{n∈\mathbf N:g(n)≠f(n)\}

{nN:g(n)=f(n)} is not empty, which means we can define

m

min

{

n

N

:

g

(

n

)

f

(

n

)

}

m≔\min⁡\{n∈\mathbf N:g(n)≠f(n)\}

m:=min{nN:g(n)=f(n)}
So

g

(

m

)

f

(

m

)

=

a

m

g(m)≠f(m)=a_m

g(m)=f(m)=am, and for all

n

<

m

,

g

(

n

)

=

f

(

n

)

=

a

n

n<m,g(n)=f(n)=a_n

n<m,g(n)=f(n)=an, in that case,

g

(

m

)

g(m)

g(m) must equal some

x

X

x∈X

xX, since

g

g

g is increasing, we have

x

>

g

(

n

)

,

n

<

m

x>g(n),∀n<m

x>g(n),n<m, in particular:

x

{

x

X

:

n

<

m

,

x

a

n

}

x

min

{

x

X

:

n

<

m

,

x

a

n

}

=

a

m

x∈\{x∈X:∀n<m,x≠a_n \}⇒x≥\min⁡\{x∈X:∀n<m,x≠a_n \}=a_m

x{xX:n<m,x=an}xmin{xX:n<m,x=an}=am
Together with

g

(

m

)

a

m

g(m)≠a_m

g(m)=am we know that

g

(

m

)

>

a

m

X

g(m)>a_m∈X

g(m)>amX, since

g

g

g is strictly increasing, this means

a

m

g

(

N

)

a_m∉g(\mathbf N)

am/g(N), or

g

g

g is not surjective, a contradiction.

Exercise 8.1.4

We define

A

A

A as what Hint suggests. Consider

f

A

:

A

f

(

N

)

f|_A:A→f(\mathbf N)

fA:Af(N), we prove

f

A

f|_A

fA is a bijection.
Let

m

,

n

A

,

m

n

m,n∈A,m≠n

m,nA,m=n, then we shall have

m

<

n

m<n

m<n or

n

<

m

n<m

n<m, in either case, we can deduce from the definition of

A

A

A that

f

A

(

m

)

f

A

(

n

)

f|_A (m)≠f|_A (n)

fA(m)=fA(n), so

f

A

f|_A

fA is injective.
For

y

f

(

N

)

∀y∈f(\mathbf N)

yf(N), we can have

k

N

k∈\mathbf N

kN, s.t.

y

=

f

(

k

)

y=f(k)

y=f(k). Now for all

0

n

k

0≤n≤k

0nk, we can examine

f

(

n

)

f(n)

f(n) recursively starting from

0

0

0 and choose the first

m

m

m such that

f

(

m

)

=

y

f(m)=y

f(m)=y. If

m

=

k

m=k

m=k, this means

k

A

k∈A

kA. If

m

<

k

m<k

m<k, then

m

A

m∈A

mA and

f

(

m

)

=

y

f(m)=y

f(m)=y. In either case we have

y

f

A

(

A

)

y∈f|_A (A)

yfA(A), so

f

A

f|_A

fA is surjective.
Since

A

A

A is a subset of

N

\mathbf N

N and is at most countable,

f

(

N

)

f(\mathbf N)

f(N) is at most countable.

Exercise 8.1.5

X

X

X is countable, thus we can find a bijection

g

:

N

X

g:\mathbf N→X

g:NX, then

h

=

f

g

h=f∘g

h=fg is a function from

N

\mathbf N

N to

Y

Y

Y, thus use Proposition 8.1.8,

f

(

X

)

=

f

(

g

(

N

)

)

=

h

(

N

)

f(X)=f(g(\mathbf N))=h(\mathbf N)

f(X)=f(g(N))=h(N) is at most countable.

Exercise 8.1.6

If there exists an injective map

f

:

A

N

f:A→\mathbf N

f:AN, then

f

f

f is a bijection from

A

A

A to

f

(

A

)

f(A)

f(A), since

f

(

A

)

f(A)

f(A) is a subset of

N

\mathbf N

N and is at most countable,

A

A

A is at most countable as

f

1

f^{-1}

f1 is a function from

f

(

A

)

f(A)

f(A) to

A

A

A and

A

=

f

1

(

f

(

A

)

)

A=f^{-1} (f(A))

A=f1(f(A)) and use Corollary 8.1.9.
If

A

A

A is at most countable, then

A

A

A is finite or

A

A

A is countable. Then
For the case

A

A

A is finite, we can see

A

A

A has cardinality

n

n

n for some natural number

n

n

n. We select a bijection

g

g

g from

A

A

A to

{

1

,

2

,

,

n

}

\{1,2,…,n\}

{1,2,,n}, and define

f

:

A

N

f:A→\mathbf N

f:AN by

f

(

a

)

=

g

(

a

)

,

a

A

f(a)=g(a),∀a∈A

f(a)=g(a),aA, then

f

f

f is injective since

g

g

g is bijective.
For the case

A

A

A is countable, we can find a bijection

f

:

A

N

f: A→\mathbf N

f:AN, this function is injective.

Exercise 8.1.7

We use all the notations from Hint, then

h

:

N

X

Y

h:\mathbf N→X∪Y

h:NXY is defined.
We need to show

h

(

N

)

=

X

Y

h(\mathbf N)=X∪Y

h(N)=XY, notice first that

n

N

,

h

(

n

)

X

∀n∈\mathbf N,h(n)∈X

nN,h(n)X if

n

n

n is even, and

h

(

n

)

Y

h(n)∈Y

h(n)Y if

n

n

n is odd, thus

h

(

n

)

X

Y

,

n

N

h(n)∈X∪Y,∀n∈\mathbf N

h(n)XY,nN, or

h

(

N

)

X

Y

h(\mathbf N)⊆X∪Y

h(N)XY.
Next, we have

(

x

X

Y

)

(

x

X

)

(

x

Y

)

(

x

=

f

(

m

)

)

(

x

=

g

(

n

)

)

(

x

=

h

(

2

m

)

)

(

x

=

h

(

2

n

+

1

)

)

(

x

h

(

N

)

)

\begin{aligned}(x∈X∪Y)&⇒(x∈X)∨(x∈Y)⇒(x=f(m))∨(x=g(n))\\&⇒(x=h(2m))∨(x=h(2n+1))⇒(x∈h(\mathbf N))\end{aligned}

(xXY)(xX)(xY)(x=f(m))(x=g(n))(x=h(2m))(x=h(2n+1))(xh(N))
Thus

X

Y

h

(

N

)

X∪Y⊆h(\mathbf N)

XYh(N). Then we can have

X

Y

=

h

(

N

)

X∪Y=h(\mathbf N)

XY=h(N)
By Corollary 8.1.9 we know that

X

Y

X∪Y

XY is at most countable, we remains to show

X

Y

X∪Y

XY is not finite. Assume so, then

X

Y

X∪Y

XY has cardinality

n

n

n for some natural number

n

n

n. So

X

X

Y

#

(

X

)

n

X⊆X∪Y ⇒ \#(X)≤n

XXY#(X)n
But if we let

S

=

{

1

,

2

,

,

n

+

1

}

S=\{1,2,…,n+1\}

S={1,2,,n+1}, then

f

:

S

f

(

S

)

f:S→f(S)

f:Sf(S) is a bijection, thus

f

(

S

)

f(S)

f(S) has cardinality

n

+

1

n+1

n+1, however,

f

(

S

)

X

f(S)⊆X

f(S)X, so

#

(

X

)

n

+

1

\#(X)≥n+1

#(X)n+1, this is a contradiction.

Exercise 8.1.8

By hypothesis, we have a bijection

f

:

N

X

f:\mathbf N→X

f:NX and a bijection

g

:

N

Y

g:\mathbf N→Y

g:NY. We define a function

h

:

N

×

N

X

×

Y

h:\mathbf N×\mathbf N→X×Y

h:N×NX×Y by

h

(

m

,

n

)

=

(

f

(

m

)

,

g

(

n

)

)

h(m,n)=(f(m),g(n))

h(m,n)=(f(m),g(n)), then we have

(

h

(

m

,

n

)

=

h

(

m

,

n

)

)

(

(

f

(

m

)

=

f

(

m

)

)

(

g

(

n

)

=

g

(

n

)

)

)

(

m

=

m

)

(

n

=

n

)

(

m

,

n

)

=

(

m

,

n

)

\begin{aligned}(h(m,n)=h(m’,n’))&⇒((f(m)=f(m’ ))∧(g(n)=g(n’ )))\\&⇒(m=m’ )∧(n=n’ )⇒(m,n)=(m’,n’ )\end{aligned}

(h(m,n)=h(m,n))((f(m)=f(m))(g(n)=g(n)))(m=m)(n=n)(m,n)=(m,n)
Thus

h

h

h is injective. And for

(

x

,

y

)

X

×

Y

∀(x,y)∈X×Y

(x,y)X×Y, we have

x

X

x∈X

xX and

y

Y

y∈Y

yY, so

m

,

n

N

∃m,n∈N

m,nN, s.t.

f

(

m

)

=

x

,

g

(

n

)

=

y

f(m)=x,g(n)=y

f(m)=x,g(n)=y, thus

h

(

m

,

n

)

=

(

x

,

y

)

h(m,n)=(x,y)

h(m,n)=(x,y), which means

h

h

h is surjective.
Now that

h

h

h is a bijection, from Corollary 8.1.13 we know

X

×

Y

X×Y

X×Y is countable.

Exercise 8.1.9

If

I

I

I is finite and

A

α

A_α

Aα is finite for every

α

α

α, then the statement is obvious.
Now suppose

I

I

I is countable, then we have a bijection

g

:

N

I

g:\mathbf N→I

g:NI, for each

α

I

α∈I

αI such that

A

α

A_α≠∅

Aα=, we assign a function

f

α

:

N

A

α

f_α:\mathbf N→A_α

fα:NAα as follows:
If

A

α

A_α

Aα is finite, then it’s possible to write

A

α

=

{

x

1

,

,

x

n

}

,

n

N

A_α=\{x_1,…,x_n \},n∈\mathbf N

Aα={x1,,xn},nN, then let

f

α

(

i

)

=

{

x

i

,

1

i

n

x

1

,

i

>

n

f_α (i)=\begin{cases}x_i,&1≤i≤n\\x_1,&i>n\end{cases}

fα(i)={xi,x1,1ini>n
If

A

α

A_α

Aα is infinite or countable, then we can find a bijection

f

:

N

A

α

f’:\mathbf N→A_α

f:NAα, we let

f

α

=

f

f_α=f’

fα=f.
So as long as

A

α

A_α

Aα is nonempty, we have assigned a function

f

α

:

N

A

α

f_α:\mathbf N→A_α

fα:NAα. Next, if denote

J

=

{

α

I

:

A

α

}

J=\{α∈I:A_α≠∅\}

J={αI:Aα=} we define

h

:

N

×

N

α

J

A

α

h: N×N→⋃_{α∈J}A_α

h:N×NαJAα as follows:

h

(

m

,

n

)

=

f

g

(

m

)

(

n

)

h(m,n)=f_{g(m)} (n)

h(m,n)=fg(m)(n)
Then use Corollary 8.1.13 and Corollary 8.1.9, we can see that

α

J

A

α

⋃_{α∈J}A_α

αJAα is at most countable. The final statement results from

α

J

A

α

=

α

I

A

α

⋃_{α∈J}A_α =⋃_{α∈I}A_α

αJAα=αIAα .

Exercise 8.1.10

We define

Q

n

=

{

a

/

b

:

a

+

b

n

,

a

Z

,

b

N

+

}

Q_n=\{a/b:|a|+b≤n,a∈\mathbf Z,b∈\mathbf N^+\}

Qn={a/b:a+bn,aZ,bN+} for every

n

N

n∈\mathbf N

nN, then

Q

0

=

,

Q

1

=

{

0

}

,

Q

2

=

{

0

,

1

,

1

}

Q_0=∅,Q_1=\{0\}, Q_2=\{0,1,-1\}

Q0=,Q1={0},Q2={0,1,1}, etc. Each

Q

n

Q_n

Qn is finite, thus have cardinality

c

n

c_n

cn, we can see

c

0

=

0

,

c

1

=

1

,

c

2

=

3

c_0=0,c_1=1,c_2=3

c0=0,c1=1,c2=3, etc. As

Q

n

Q

n

+

1

Q_n⊆Q_{n+1}

QnQn+1, we define

S

n

=

Q

n

\

(

i

=

0

n

1

Q

i

)

,

n

N

+

S_n=Q_n\backslash \left(⋃_{i=0}^{n-1}Q_i \right),\quad n∈\mathbf N^+

Sn=Qn\(i=0n1Qi),nN+
since

1

n

1

Q

n

\frac{1}{n-1}∈Q_n

n11Qn, but

1

n

1

i

=

0

n

1

Q

i

\frac{1}{n-1}∉⋃_{i=0}^{n-1}Q_i

n11/i=0n1Qi , each

S

n

S_n

Sn is nonempty for

n

>

1

n>1

n>1, and

S

1

=

Q

1

=

{

0

}

S_1=Q_1=\{0\}

S1=Q1={0}, so each

S

n

S_n

Sn is nonempty for

n

N

+

n∈\mathbf N^+

nN+.
Now we define

q

n

=

c

n

c

n

1

q_n=c_n-c_{n-1}

qn=cncn1, then each

S

n

S_n

Sn has cardinality

q

n

q_n

qn, so

(

q

n

)

n

=

1

(q_n )_{n=1}^∞

(qn)n=1 is a positive increasing sequence.
We define a function

f

:

N

Q

f:\mathbf N→\mathbf Q

f:NQ inductively as follows:
Start from

0

0

0, we let

f

1

(

0

)

=

0

f_1 (0)=0

f1(0)=0, which is in fact a bijection from

{

i

N

:

c

0

i

<

c

1

}

\{i∈\mathbf N:c_0≤i<c_1\}

{iN:c0i<c1} to

S

1

S_1

S1.
Then for any

S

n

S_n

Sn, we can find a bijection

g

n

:

{

i

N

:

0

i

<

q

n

}

S

n

g_n:\{i∈\mathbf N:0≤i<q_n \}→S_n

gn:{iN:0i<qn}Sn, we then define

f

n

(

i

)

=

g

n

(

i

c

n

1

)

,

c

n

1

i

<

c

n

f_n (i)=g_n (i-c_{n-1} ),\quad c_{n-1}≤i<c_n

fn(i)=gn(icn1),cn1i<cn
So we know

f

n

f_n

fn is a bijection from

{

i

N

:

c

n

1

i

<

c

n

}

\{i∈\mathbf N:c_{n-1}≤i<c_n\}

{iN:cn1i<cn} to

S

n

S_n

Sn.
Finally we can define

f

(

k

)

=

f

n

(

k

)

f(k)=f_n (k)

f(k)=fn(k), in which

n

n

n is the positive natural number which satisfies

c

n

1

k

<

c

n

c_{n-1}≤k<c_n

cn1k<cn, since if

m

n

m≠n

m=n, we have

{

i

N

:

c

n

1

i

<

c

n

}

{

i

N

:

c

m

1

i

<

c

m

}

=

\{i∈\mathbf N:c_{n-1}≤i<c_n \}∩\{i∈\mathbf N:c_{m-1}≤i<c_m \}=∅

{iN:cn1i<cn}{iN:cm1i<cm}=
Since any for natural number

n

n

n, we have

{

0

,

1

,

,

n

1

}

Q

n

\{0,1,…,n-1\}⊆Q_n

{0,1,,n1}Qn, so

c

n

n

c_n≥n

cnn, which means

n

=

1

{

i

N

:

c

n

1

i

<

c

n

}

=

N

⋃_{n=1}^∞\{i∈\mathbf N:c_{n-1}≤i<c_n\}=\mathbf N

n=1{iN:cn1i<cn}=N
Thus

f

f

f is truly a function defined on

N

\mathbf N

N, and the injectivity of

f

f

f is clear from the induction process, as we form

f

f

f from a sequence of bijective functions on disjoint subsets of

N

\mathbf N

N. We only remains to show

f

f

f is surjective. Choose any

q

Q

q∈\mathbf Q

qQ, then we can write

q

=

a

/

b

q=a/b

q=a/b, in which

b

b

b is a positive natural number, we can be sure that

q

Q

a

+

b

q∈Q_{|a|+b}

qQa+b, so

q

S

m

,

0

<

m

a

+

b

q∈S_m,\quad 0<m≤|a|+b

qSm,0<ma+b
Thus there’s a number

k

{

i

N

:

c

m

1

i

<

c

m

}

k∈\{i∈\mathbf N:c_{m-1}≤i<c_m\}

k{iN:cm1i<cm} such that

f

m

(

k

)

=

f

(

k

)

=

q

f_m (k)=f(k)=q

fm(k)=f(k)=q. This means

f

f

f is surjective.


版权声明:本文为christangdt原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。