Ubuntu配置环境:不需要看那些乱七八糟教程,只需要一行:
sudo apt-get install mpich2
最简单的实现-按行并行
主进程不参与计算,只负责分发和收集数据。在主进程中,A按行划分为大致相等的部分,然后将部分的A和全部的B传递给子进程。子进程计算部分乘法并返回结果,主进程收集并报告结果。
使用最简单的Send和Recv进行通信。
#include <mpi.h>
#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;
const int N = 317; // 随便写的,随机数位于[0, N]之间
void matGene(int *A, int row, int column){
srand(time(NULL));
for (int i = 0; i < row; i++)
for (int j = 0; j < column; j++)
A[i * row + j] = rand() % N; //A[i][j]
}
void matMulti(int *A, int *B, int*C, int row, int n){
for (int i = 0; i < row; i++){
for (int j = 0; j < n; j++){
C[i*n + j] = 0;
for (int k = 0; k < n; k++)
C[i*n + j] = A[i*n + k] * B[k*n + j];
}
}
}
int main(int argc, char *argv[]){
// Sorry but Only Deal With Square Matrixs
// To Run:
// mpicxx matrix_multi.cpp
// mpiexec -n comm_sz ./a.out mat_dim
// Calculate Parameters Definition
int n = atoi(argv[1]); // matrix dimension
int beginRow, endRow; // the range of rows calculating in certain process
double beginTime, endTime; // time record
// MPI Common Head
int my_rank = 0, comm_sz = 0;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &comm_sz);
MPI_Status status;
if (comm_sz == 1){ // no parallel
// Prepare data
int* A = new int[n * n];
int* B = new int[n * n];
int* C = new int[n * n];
matGene(A, n, n);
matGene(B, n, n);
// Calculate C[i][j] & Time
beginTime = MPI_Wtime();
matMulti(A, B, C, n, n);
endTime = MPI_Wtime();
cout << "Time: " << endTime - beginTime << endl;
// End
delete[] A;
delete[] B;
delete[] C;
}
else{ // parallel: main process collect the result, others calculate for result of "each_row" rows
int each_row = n / (comm_sz - 1);
if (my_rank == 0){ // process 0: main process, data distribution & collect calculate results
// Prepare data
int* A = new int[n * n];
int* B = new int[n * n];
int* C = new int[n * n];
matGene(A, n, n);
matGene(B, n, n);
beginTime = MPI_Wtime();
// Send: A[beginRow:endRow, :], whole B
// beginRow = each_row * (my_rank-1), endRow = each_row * my_rank;
for (int i = 0; i < comm_sz-1; i++){
beginRow = each_row * i, endRow = each_row * (i + 1);
MPI_Send(&A[beginRow * n + 0], each_row * n, MPI_INT, i + 1, 1, MPI_COMM_WORLD);
MPI_Send(&B[0 * n + 0], n * n, MPI_INT, i + 1, 2, MPI_COMM_WORLD);
// cout << "I am alive in sending data to process " << i << endl;
}
// Recv: C[beginRow:endRow, :]
for (int i = 0; i < comm_sz-1; i++){
MPI_Recv(&C[beginRow * n + 0], each_row*n, MPI_INT, i + 1, 3, MPI_COMM_WORLD, &status);
// cout << "I am alive in receiving data from process " << i << endl;
}
endTime = MPI_Wtime();
cout << "Time: " << endTime - beginTime << endl;
delete[] A;
delete[] B;
delete[] C;
}
if (my_rank != 0){ // other processes: calculate A * B
// beginRow = each_row * (my_rank-1), endRow = each_row * my_rank;
int* A = new int[each_row * n]; // A[beginRow:endRow, :]
int* B = new int[n * n];
int* C = new int[each_row * n]; // C[beginRow:endRow, :]
MPI_Recv(&A[0 * n + 0], each_row * n, MPI_INT, 0, 1, MPI_COMM_WORLD, &status);//从A[0][0]和B[0][0]开始接受
MPI_Recv(&B[0 * n + 0], n * n, MPI_INT, 0, 2, MPI_COMM_WORLD, &status);
matMulti(A, B, C, each_row, n);
// cout << "Hello and I am process " << my_rank << endl;
MPI_Send(&C[0 * n + 0], each_row*n, MPI_INT, 0, 3, MPI_COMM_WORLD);//起始地址是C[my_rank-1][0],大小是each_row*n
delete[] A;
delete[] B;
delete[] C;
}
}
MPI_Finalize();
return 0;
}
第一次改进-用Scatter, Gather, Bcast分发数据
A平均分配给各个子进程,用Scatter分发更合适;B要传递给每个子进程,用Broadcast(Bcast)通信更合适。收集计算结果使用Gather.
注意:
1.改用Scatter分配数据后,每个进程分配的部分矩阵具有完全相等的规模。因此。记comm_sz为进程数,矩阵的维度需要是comm_sz的倍数。我们将矩阵的维度扩展到comm_sz的倍数,多余的部分用0填充,保证正确性。
if(n % comm_sz != 0){
n -= n % comm_sz;
n += comm_sz;
}
2.改用Scatter分配数据后,计算任务平均地分配给每一个进程,所以主进程不仅要分发收集结果,也要参与计算。起初我没有注意到这个情况,而将矩阵按(comm_sz-1)的倍数填充维度,导致分发的不平均。如果分发的行数不够,就不能保证结果正确;如果分发的行数超出,就会出现很多不同类型的内存错误(大多都源于free时内存泄漏等原因)。调这个bug很有意思,在调整指令执行顺序(比如delete的先后),调整进程数和矩阵维度时都会报不同类型的错误信息,使人误入歧途。
#include <mpi.h>
#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;
// To Run:
// mpicxx matrix_multi_improvement1.cpp
// mpiexec -n 4 ./a.out 64
// Improvement 1:
// Matrix A: different processes deal with different components, so Scatter instead of Send/Recv
// Matrix B: Shared by all processes, so Bcast instead of Send/Recv
// Matrix C: receive different components from different processes, so Gather instead of Send/Recv
// Main process should also involve in calculation
void matGene(int *A, int size, int actual_size){
// actual size: the matrix we use may have a larger dimension than n * n
for (int i = 0; i < actual_size; i++){
for (int j = 0; j < actual_size; j++){
if(i < size && j < size) A[i * actual_size + j] = rand() % 5; //A[i][j]
else A[i * actual_size + j] = 0;
}
}
}
void matMulti(int *A, int *B, int*C, int row, int n){
for (int i = 0; i < row; i++){
for (int j = 0; j < n; j++){
C[i*n + j] = 0;
for (int k = 0; k < n; k++)
C[i*n + j] += A[i*n + k] * B[k*n + j];
}
}
}
int main(int argc, char *argv[]){
// Only Deal With Square Matrixs
// Calculate Parameters Definition
int n = atoi(argv[1]); // matrix dimension
// int beginRow, endRow; // the range of rows calculating in certain process
double beginTime, endTime; // time record
srand(time(NULL));
// MPI Common Head
int my_rank = 0, comm_sz = 0;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &comm_sz);
MPI_Status status;
if (comm_sz == 1){ // no parallel
// Prepare data
int* A = new int[n * n + 2];
int* B = new int[n * n + 2];
int* C = new int[n * n + 2];
int saveN = n;
matGene(A, saveN, n);
matGene(B, saveN, n);
// Calculate C[i][j] & Time
beginTime = MPI_Wtime();
matMulti(A, B, C, n, n);
endTime = MPI_Wtime();
cout << "Time: " << endTime - beginTime << endl;
// Output
cout << "A" << endl;
for(int i = 0; i < saveN; i++){
for(int j = 0; j < saveN; j++)
cout << A[i * n + j] << " ";
cout << endl;
}
cout << "B" << endl;
for(int i = 0; i < saveN; i++){
for(int j = 0; j < saveN; j++)
cout << B[i * n + j] << " ";
cout << endl;
}
cout << "C" << endl;
for(int i = 0; i < saveN; i++){
for(int j = 0; j < saveN; j++)
cout << C[i * n + j] << " ";
cout << endl;
}
delete[] A;
delete[] B;
delete[] C;
}
else{ // parallel: main process collect the result and also involve in calculation
int saveN = n;
// must equal scatter: actual n is bigger than input
if(n % comm_sz != 0){
n -= n % comm_sz;
n += comm_sz;
}
int each_row = n / comm_sz;
// Matrixs
int* A = new int[n * n + 2];
int* B = new int[n * n + 2];
int* C = new int[n * n + 2];
// beginRow = each_row * (my_rank-1), endRow = each_row * my_rank;
int* partA = new int[each_row * n + 2]; // A[beginRow:endRow, :]
int* partC = new int[each_row * n + 2]; // C[beginRow:endRow, :]
if (my_rank == 0){
// Prepare data
cout << "n = " << n << endl;
matGene(A, saveN, n);
matGene(B, saveN, n);
beginTime = MPI_Wtime();
}
// data distribution & calculate results & collect
// Send: Scatter A, Bcast whole B
MPI_Scatter(&A[0 * n + 0], each_row * n, MPI_INT, &partA[0 * n + 0], each_row * n, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(&B[0 * n + 0], n * n, MPI_INT, 0, MPI_COMM_WORLD);
// All processes involve calculation
matMulti(partA, B, partC, each_row, n);
// Recv: Gather C
MPI_Gather(&partC[0 * n + 0], each_row * n, MPI_INT, &C[0 * n + 0], each_row * n, MPI_INT, 0, MPI_COMM_WORLD);
if (my_rank == 0){
endTime = MPI_Wtime();
cout << "Time: " << endTime - beginTime << endl;
// Output
cout << "A" << endl;
for(int i = 0; i < saveN; i++){
for(int j = 0; j < saveN; j++)
cout << A[i * n + j] << " ";
cout << endl;
}
cout << "B" << endl;
for(int i = 0; i < saveN; i++){
for(int j = 0; j < saveN; j++)
cout << B[i * n + j] << " ";
cout << endl;
}
cout << "C" << endl;
for(int i = 0; i < saveN; i++){
for(int j = 0; j < saveN; j++)
cout << C[i * n + j] << " ";
cout << endl;
}
}
// if(my_rank != 0)
if(true){
delete[] A;
delete[] B;
delete[] C;
delete[] partA;
delete[] partC;
}
else{
delete[] A;
cout << "Delete A in " << my_rank << endl;
delete[] B;
cout << "Delete B in " << my_rank << endl;
delete[] C;
cout << "Delete C in " << my_rank << endl;
delete[] partA;
cout << "Delete partA in " << my_rank << endl;
delete[] partC;
cout << "Delete partC in " << my_rank << endl;
}
}
MPI_Finalize();
return 0;
}
第二次改进-实现分块乘法
将可用于计算的进程数(comm_sz-1)分解为a*b,然后将全体行划分为a个部分,全体列划分为b个部分,从而将整个矩阵划分为size相同的(comm_sz-1)个块。每个子进程负责计算最终结果的一块,只需要接收A对应范围的行和B对应范围的列,而不需要把整个矩阵传过去。主进程负责分发和汇总结果。
注意:
1.为了保证平均划分,矩阵仍需要扩展,具体操作同第一次改进。
2.第二次改进继承的是最初版本,通信接口仍然使用Send/Recv,所以进程编号要管理好。另外,因为主进程不能和自己通信,所以主进程没有参与局部计算,这点和第一次改进不同。
#include <mpi.h>
#include <iostream>
#include <cstdlib>
#include <ctime>
#include <cmath>
using namespace std;
// To Run:
// mpicxx matrix_multi_improvement2.cpp
// mpiexec -n 4 ./a.out 64
// Improvement 2: Block Multiplication, based on Original
// Main process: process 0, data distribution & collect calculate results, no calculation
// Others: calculate for a block of A * B
void matGene(int *A, int size, int actual_size){
// actual size: the matrix we use may have a larger dimension than n * n
for (int i = 0; i < actual_size; i++){
for (int j = 0; j < actual_size; j++){
if(i < size && j < size) A[i * actual_size + j] = 1; //A[i][j]
else A[i * actual_size + j] = 0;
}
}
}
void matMulti(int *A, int *B, int*C, int m, int n, int p){
for (int i = 0; i < m; i++){
for (int j = 0; j < p; j++){
C[i*p + j] = 0;
for (int k = 0; k < n; k++)
C[i*p + j] += A[i*n + k] * B[k*p + j];
}
}
}
int factor(int n){
// return the largest factor that is not larger than sqrt(n)
double sqr_root = sqrt(n);
for(int i = sqr_root; i >= 1; i--){
if(n % i == 0) return i;
}
}
int main(int argc, char *argv[]){
// Only Deal With Square Matrixs
// Calculate Parameters Definition
int n = atoi(argv[1]); // matrix dimension
// int beginRow, endRow; // the range of rows calculating in certain process
double beginTime, endTime; // time record
srand(time(NULL));
// MPI Common Head
int my_rank = 0, comm_sz = 0;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &comm_sz);
MPI_Status status;
if (comm_sz == 1){ // no parallel
// Prepare data
int* A = new int[n * n + 2];
int* B = new int[n * n + 2];
int* C = new int[n * n + 2];
int saveN = n;
matGene(A, saveN, n);
matGene(B, saveN, n);
// Calculate C[i][j] & Time
beginTime = MPI_Wtime();
matMulti(A, B, C, n, n, n);
endTime = MPI_Wtime();
cout << "Time: " << endTime - beginTime << endl;
// Output
cout << "A" << endl;
for(int i = 0; i < saveN; i++){
for(int j = 0; j < saveN; j++)
cout << A[i * n + j] << " ";
cout << endl;
}
cout << "B" << endl;
for(int i = 0; i < saveN; i++){
for(int j = 0; j < saveN; j++)
cout << B[i * n + j] << " ";
cout << endl;
}
cout << "C" << endl;
for(int i = 0; i < saveN; i++){
for(int j = 0; j < saveN; j++)
cout << C[i * n + j] << " ";
cout << endl;
}
delete[] A;
delete[] B;
delete[] C;
}
else{ // parallel: main process collect the result and also involve in calculation
int saveN = n;
// must equal scatter: actual n is bigger than input
if(n % (comm_sz - 1) != 0){
n -= n % (comm_sz - 1);
n += (comm_sz - 1);
}
int a = (comm_sz - 1) / factor(comm_sz - 1);
int b = factor(comm_sz - 1);
int each_row = n / a;
int each_column = n / b;
if(my_rank == 0) cout << each_row << "\t" << each_column << endl;
if (my_rank == 0){
int* A = new int[n * n + 2];
int* B = new int[n * n + 2];
int* C = new int[n * n + 2];
// Prepare data
cout << "n = " << n << endl;
matGene(A, saveN, n);
matGene(B, saveN, n);
beginTime = MPI_Wtime();
// include begin not end
// beginRow = ((my_rank - 1) / b) * each_row, endRow = beginRow + each_row;
// beginColumn = ((my_rank - 1) % b) * each_column, endColumn = beginColumn + each_column;
// Send: A[beginRow:endRow, :], B[:, beginColumn:endColumn]
for(int i = 1; i < comm_sz; i++){
int beginRow = ((i - 1) / b) * each_row;
int beginColumn = ((i - 1) % b) * each_column;
// A: beginRow ~ endRow
MPI_Send(&A[beginRow * n + 0], each_row * n, MPI_INT, i, i, MPI_COMM_WORLD);
// B: n times, once a row
for(int j = 0; j < n; j++){
MPI_Send(&B[j * n + beginColumn], each_column, MPI_INT, i, i * n + j + comm_sz + 2, MPI_COMM_WORLD);;
}
}
// Recv: C[beginRow:endRow, beginColumn:endColumn]
for (int i = 1; i < comm_sz; i++){
int beginRow = ((i - 1) / b) * each_row;
int endRow = beginRow + each_row;
int beginColumn = ((i - 1) % b) * each_column;
for(int j = beginRow; j < endRow; j++){
MPI_Recv(&C[j * n + beginColumn], each_column, MPI_INT, i, each_row * i + (j - beginRow), MPI_COMM_WORLD, &status);
}
}
endTime = MPI_Wtime();
cout << "Time: " << endTime - beginTime << endl;
// Output
cout << "A" << endl;
for(int i = 0; i < saveN; i++){
for(int j = 0; j < saveN; j++)
cout << A[i * n + j] << " ";
cout << endl;
}
cout << "B" << endl;
for(int i = 0; i < saveN; i++){
for(int j = 0; j < saveN; j++)
cout << B[i * n + j] << " ";
cout << endl;
}
cout << "C" << endl;
for(int i = 0; i < saveN; i++){
for(int j = 0; j < saveN; j++)
cout << C[i * n + j] << " ";
cout << endl;
}
delete[] A;
delete[] B;
delete[] C;
}
else{
int* partA = new int[each_row * n + 2]; // A[beginRow:endRow, :]
int* partB = new int[n * each_column + 2]; // B[:, beginColumn:endColumn]
int* partC = new int[each_row * each_column + 2]; // C[beginRow:endRow, beginColumn:endColumn]
// include begin not end
// beginRow = ((my_rank - 1) / b) * each_row, endRow = beginRow + each_row;
// beginColumn = ((my_rank - 1) % b) * each_column, endColumn = beginColumn + each_column;
// Recv: partA, partB
MPI_Recv(&partA[0 * n + 0], each_row * n, MPI_INT, 0, my_rank, MPI_COMM_WORLD, &status);
for(int j = 0; j < n; j++){
MPI_Recv(&partB[j * each_column + 0], each_column, MPI_INT, 0, my_rank * n + j + comm_sz + 2, MPI_COMM_WORLD, &status);
}
matMulti(partA, partB, partC, each_row, n, each_column);
// Send: partC
for(int j = 0; j < each_row; j++){
MPI_Send(&partC[j * each_column + 0], each_column, MPI_INT, 0, each_row * my_rank + j, MPI_COMM_WORLD);
}
delete[] partA;
delete[] partB;
delete[] partC;
}
}
MPI_Finalize();
return 0;
}
第三次改进-实现Cannon卡农算法
针对最后的实验要求,修改两个小问题:
1.主进程需要参与计算:针对此,主进程也需要有一套partABC,又因为我使用Send和Recv通信(进程不能用Send和Recv和自己通信),主进程partA/partB/C的数据直接从A/B/partC里面复制,针对此要做条件判断。
2.实现Cannon算法:Cannon算法实际上和之前的分块乘法相同,每个进程负责矩阵其中一块的计算;但partA, partB每次只传入一块(而非整行整列),虽然增加了Send和Recv的次数,但是节省了内存,用于存储partA, partB的内存减少到原来的
1
c
o
m
m
_
s
z
\frac{1}{\sqrt{comm\_sz}}
comm_sz1.
注意:
1.这里的实现比较简单,要求进程数comm_sz必须是平方数(程序中记comm_sz = a * a),同时矩阵的维度需要扩展到能被a整除。
2.通信接口使用Send/Recv,进程编号要管理好。
#include <mpi.h>
#include <iostream>
#include <cstdlib>
#include <ctime>
#include <cmath>
using namespace std;
// To Run:
// mpicxx matrix_multi_improvement2.cpp
// mpiexec -n 4 ./a.out 64
// Improvement 3: Cannon Algorithm + Block Multiplication, based on Improvement 2
// Main process: process 0, data distribution & collect calculate results, no calculation
// Others: calculate for a block of A * B
void matGene(int *A, int size, int actual_size){
// actual size: the matrix we use may have a larger dimension than n * n
for (int i = 0; i < actual_size; i++){
for (int j = 0; j < actual_size; j++){
if(i < size && j < size) A[i * actual_size + j] = 1; //A[i][j]
else A[i * actual_size + j] = 0;
}
}
}
void matMulti(int *A, int *B, int*C, int m, int n, int p){
for (int i = 0; i < m; i++){
for (int j = 0; j < p; j++){
C[i*p + j] = 0;
for (int k = 0; k < n; k++)
C[i*p + j] += A[i*n + k] * B[k*p + j];
}
}
}
int factor(int n){
// return the largest factor that is not larger than sqrt(n)
double sqr_root = sqrt(n);
for(int i = sqr_root; i >= 1; i--){
if(n % i == 0) return i;
}
}
int main(int argc, char *argv[]){
// Only Deal With Square Matrixs
// Calculate Parameters Definition
int n = atoi(argv[1]); // matrix dimension
// int beginRow, endRow; // the range of rows calculating in certain process
double beginTime, endTime; // time record
srand(time(NULL));
// MPI Common Head
int my_rank = 0, comm_sz = 0;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &comm_sz);
MPI_Status status;
if (comm_sz == 1){ // no parallel
// Prepare data
int* A = new int[n * n + 2];
int* B = new int[n * n + 2];
int* C = new int[n * n + 2];
int saveN = n;
matGene(A, saveN, n);
matGene(B, saveN, n);
// Calculate C[i][j] & Time
beginTime = MPI_Wtime();
matMulti(A, B, C, n, n, n);
endTime = MPI_Wtime();
cout << "Time: " << endTime - beginTime << endl;
// Output
/*
cout << "A" << endl;
for(int i = 0; i < saveN; i++){
for(int j = 0; j < saveN; j++)
cout << A[i * n + j] << " ";
cout << endl;
}
cout << "B" << endl;
for(int i = 0; i < saveN; i++){
for(int j = 0; j < saveN; j++)
cout << B[i * n + j] << " ";
cout << endl;
}
cout << "C" << endl;
for(int i = 0; i < saveN; i++){
for(int j = 0; j < saveN; j++)
cout << C[i * n + j] << " ";
cout << endl;
}
*/
delete[] A;
delete[] B;
delete[] C;
}
else{ // parallel: main process collect the result and also involve in calculation
int a = sqrt(comm_sz);
if(my_rank == 0 && comm_sz != a * a){
cout << "Not Full Square" << endl;
MPI_Finalize();
return 0;
}
int saveN = n;
// must equal scatter: actual n is bigger than input
if(n % a != 0){
n -= n % a;
n += a;
}
int each_row = n / a;
int* partA = new int[each_row * each_row + 2]; // A[beginRow:endRow, :]
int* partB = new int[each_row * each_row + 2]; // B[:, beginColumn:endColumn]
int* partC = new int[each_row * each_row + 2]; // C[beginRow:endRow, beginColumn:endColumn]
int beginRow, beginColumn;
// Data generation
if (my_rank == 0){
// Prepare data
cout << "n = " << n << endl;
int* A = new int[n * n + 2];
int* B = new int[n * n + 2];
int* C = new int[n * n + 2];
matGene(A, saveN, n);
matGene(B, saveN, n);
for(int ii = 0; ii < n; ii++){
for(int jj = 0; jj < n; jj++){
C[ii * n + jj] = 0;
}
}
beginTime = MPI_Wtime();
}
for(int k = 0; k < a; k++){
int begin_part = k * each_row;
// k th
// Data Distributing
if (my_rank == 0){
for(int i = 0; i < comm_sz; i++){
// A[beginRow:beginRow+each_row, begin_part:begin_part+each_row]
// B[begin_part:begin_part+each_row, beginColumn:beginColumn+each_row]
beginRow = (i / a) * each_row;
beginColumn = (i % a) * each_row;
if(i == 0){
// Copy Straightly
for(int ii = 0; ii < each_row; ii++){
for(int jj = 0; jj < each_row; jj++){
partA[ii * each_row + jj] = A[(beginRow + ii) * n + (begin_part + jj)];
partB[ii * each_row + jj] = A[(begin_part + ii) * n + (beginColumn + jj)];
}
}
}
else{
for(int ii = 0; ii < each_row; ii++){
MPI_Send(&A[(beginRow + ii) * n + begin_part], each_row, MPI_INT, i, i * each_row + ii, MPI_COMM_WORLD);
MPI_Send(&B[(begin_part + ii) * n + beginColumn], each_row, MPI_INT, i, (i + comm_sz) * each_row + ii, MPI_COMM_WORLD);
}
}
}
}
// Data Receive
if (my_rank != 0){
for(int ii = 0; ii < each_row; ii++){
MPI_Recv(&partA[ii * each_row + 0], each_row, MPI_INT, 0, my_rank * each_row + ii, MPI_COMM_WORLD, &status);
MPI_Recv(&partB[ii * each_row + 0], each_row, MPI_INT, 0, (my_rank + comm_sz) * each_row + ii, MPI_COMM_WORLD, &status);
}
}
// Calculation
matMulti(partA, partB, partC, each_row, each_row, each_row);
// Return Result
if (my_rank != 0){
for(int ii = 0; ii < each_row; ii++){
MPI_Send(&partC[ii * each_row + 0], each_row, MPI_INT, 0, (my_rank + 2 * comm_sz) * each_row + ii, MPI_COMM_WORLD);
}
}
// Data Collection & add
if (my_rank == 0){
// C[beginRow:beginRow+each_row, beginColumn:beginColumn+each_row]
for(int i = 0; i < comm_sz; i++){
beginRow = (i / a) * each_row;
beginColumn = (i % a) * each_row;
if(i == 0){
// Copy Straightly
for(int ii = 0; ii < each_row; ii++){
for(int jj = 0; jj < each_row; jj++){
C[(beginRow + ii) * n + (beginColumn + jj)] += partC[ii * each_row + jj];
}
}
}
else{
for(int ii = 0; ii < each_row; ii++){
int* tmp_partC = new int[each_row + 2];
MPI_Recv(&tmp_partC[0], each_row, MPI_INT, i, (i + 2 * comm_sz) * each_row + ii, MPI_COMM_WORLD, &status);
for(int jj = 0; jj < each_row; jj++){
C[(beginRow + ii) * n + (beginColumn + jj)] += tmp_partC[jj];
}
delete[] tmp_partC;
}
}
}
}
}
if (my_rank == 0){
endTime = MPI_Wtime();
cout << "Time: " << endTime - beginTime << endl;
// Output
/*
cout << "A" << endl;
for(int i = 0; i < saveN; i++){
for(int j = 0; j < saveN; j++)
cout << A[i * n + j] << " ";
cout << endl;
}
cout << "B" << endl;
for(int i = 0; i < saveN; i++){
for(int j = 0; j < saveN; j++)
cout << B[i * n + j] << " ";
cout << endl;
}
cout << "C" << endl;
for(int i = 0; i < saveN; i++){
for(int j = 0; j < saveN; j++)
cout << C[i * n + j] << " ";
cout << endl;
}
*/
delete[] A;
delete[] B;
delete[] C;
}
delete[] partA;
delete[] partB;
delete[] partC;
}
MPI_Finalize();
return 0;
}