import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler,Normalizer,StandardScaler
data = pd.DataFrame(
{
'a':[1,2,3],
'b':[5,6,6],
'c':[9,100,2]
}
)
#归一化(MinMaxScaler)
min_max_scaler = MinMaxScaler()
min_max_scaler_data=min_max_scaler.fit_transform(data)
print(min_max_scaler_data)
#标准化(StandardScaler)
scale_x = StandardScaler()
scale_data = scale_x.fit_transform(data)
print(scale_data)
#正则化(Normalizer)
normalizer = Normalizer()
normalizer_data = normalizer.fit_transform(data)
print(normalizer_data)
运行结果:
[[0. 0. 0.07142857]
[0.5 1. 1. ]
[1. 1. 0. ]]
[[-1.22474487 -1.41421356 -0.62725005]
[ 0. 0.70710678 1.41131261]
[ 1.22474487 0.70710678 -0.78406256]]
[[0.09667365 0.48336824 0.87006284]
[0.01996012 0.05988036 0.99800598]
[0.42857143 0.85714286 0.28571429]]
版权声明:本文为qq_38415758原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。