前面说了一些基本的数据结构,现在来看ngx关于网络这块的处理。
ngx_event会牵涉到一个模块的东西,这个暂时先不说,在后面的文章,整合的时候才说,现在只是来看这个数据结构和功能。
看下结构体:
typedef void (*ngx_event_handler_pt)(ngx_event_t *ev);
typedef void (*ngx_connection_handler_pt)(ngx_connection_t *c);
struct ngx_event_s {
void *data;//上下文信息
unsigned write:1;//是否可写
unsigned accept:1;//accept
/* used to detect the stale events in kqueue, rtsig, and epoll */
unsigned instance:1;//
/*
* the event was passed or would be passed to a kernel;
* in aio mode - operation was posted.
*/
unsigned active:1;//是否
unsigned disabled:1;//释放
/* the ready event; in aio mode 0 means that no operation can be posted */
unsigned ready:1;
unsigned oneshot:1;
/* aio operation is complete */
unsigned complete:1;
unsigned eof:1;
unsigned error:1;
unsigned timedout:1;
unsigned timer_set:1;
unsigned delayed:1;
unsigned deferred_accept:1;
/* the pending eof reported by kqueue, epoll or in aio chain operation */
unsigned pending_eof:1;
#if !(NGX_THREADS)
unsigned posted_ready:1;
#endif
#if (NGX_WIN32)
/* setsockopt(SO_UPDATE_ACCEPT_CONTEXT) was successful */
unsigned accept_context_updated:1;
#endif
#if (NGX_HAVE_KQUEUE)
unsigned kq_vnode:1;
/* the pending errno reported by kqueue */
int kq_errno;
#endif
/*
* kqueue only:
* accept: number of sockets that wait to be accepted
* read: bytes to read when event is ready
* or lowat when event is set with NGX_LOWAT_EVENT flag
* write: available space in buffer when event is ready
* or lowat when event is set with NGX_LOWAT_EVENT flag
*
* iocp: TODO
*
* otherwise:
* accept: 1 if accept many, 0 otherwise
*/
#if (NGX_HAVE_KQUEUE) || (NGX_HAVE_IOCP)
int available;
#else
unsigned available:1;
#endif
ngx_event_handler_pt handler;//事件处理函数
#if (NGX_HAVE_AIO)
#if (NGX_HAVE_IOCP)
ngx_event_ovlp_t ovlp;
#else
struct aiocb aiocb;
#endif
#endif
ngx_uint_t index;
ngx_log_t *log;
ngx_rbtree_node_t timer;//定时事件节点
unsigned closed:1;
/* to test on worker exit */
unsigned channel:1;
unsigned resolver:1;
#if (NGX_THREADS)
unsigned locked:1;
unsigned posted_ready:1;
unsigned posted_timedout:1;
unsigned posted_eof:1;
#if (NGX_HAVE_KQUEUE)
/* the pending errno reported by kqueue */
int posted_errno;
#endif
#if (NGX_HAVE_KQUEUE) || (NGX_HAVE_IOCP)
int posted_available;
#else
unsigned posted_available:1;
#endif
ngx_atomic_t *lock;
ngx_atomic_t *own_lock;
#endif
/* the links of the posted queue */
ngx_event_t *next;//事件链表
ngx_event_t **prev;
#if 0
/* the threads support */
/*
* the event thread context, we store it here
* if $(CC) does not understand __thread declaration
* and pthread_getspecific() is too costly
*/
void *thr_ctx;
#if (NGX_EVENT_T_PADDING)
/* event should not cross cache line in SMP */
uint32_t padding[NGX_EVENT_T_PADDING];
#endif
#endif
};
ngx_event主要提供对io事件的封装,具体的io事件的处理是用的ngx_event_actions_t这个结构体
来看下这个结构体
typedef struct {
ngx_int_t (*add)(ngx_event_t *ev, ngx_int_t event, ngx_uint_t flags);
ngx_int_t (*del)(ngx_event_t *ev, ngx_int_t event, ngx_uint_t flags);
ngx_int_t (*enable)(ngx_event_t *ev, ngx_int_t event, ngx_uint_t flags);
ngx_int_t (*disable)(ngx_event_t *ev, ngx_int_t event, ngx_uint_t flags);
ngx_int_t (*add_conn)(ngx_connection_t *c);
ngx_int_t (*del_conn)(ngx_connection_t *c, ngx_uint_t flags);
ngx_int_t (*process_changes)(ngx_cycle_t *cycle, ngx_uint_t nowait);
ngx_int_t (*process_events)(ngx_cycle_t *cycle, ngx_msec_t timer,
ngx_uint_t flags);
ngx_int_t (*init)(ngx_cycle_t *cycle, ngx_msec_t timer);
void (*done)(ngx_cycle_t *cycle);
} ngx_event_actions_t;
ngx_event_actions_t 是一个通用的处理接口,具体的后面实现是根据平台来的,比如linux的epoll mac的kqueue 这些,这里不打算讲解这些平台的io处理,过一下流程就好。
每一个函数的作用喃,看一下函数名字应该能够准确的知道。
我这里以kqueue为例子过一遍。
typedef struct {
ngx_str_t *name;
void *(*create_conf)(ngx_cycle_t *cycle);
char *(*init_conf)(ngx_cycle_t *cycle, void *conf);
ngx_event_actions_t actions;
} ngx_event_module_t;
static ngx_int_t ngx_kqueue_init(ngx_cycle_t *cycle, ngx_msec_t timer);
static void ngx_kqueue_done(ngx_cycle_t *cycle);
static ngx_int_t ngx_kqueue_add_event(ngx_event_t *ev, ngx_int_t event,
ngx_uint_t flags);
static ngx_int_t ngx_kqueue_del_event(ngx_event_t *ev, ngx_int_t event,
ngx_uint_t flags);
static ngx_int_t ngx_kqueue_set_event(ngx_event_t *ev, ngx_int_t filter,
ngx_uint_t flags);
static ngx_int_t ngx_kqueue_process_changes(ngx_cycle_t *cycle, ngx_uint_t try);
static ngx_int_t ngx_kqueue_process_events(ngx_cycle_t *cycle, ngx_msec_t timer,
ngx_uint_t flags);
static ngx_inline void ngx_kqueue_dump_event(ngx_log_t *
ngx_event_module_t ngx_kqueue_module_ctx = {
&kqueue_name,
ngx_kqueue_create_conf, /* create configuration */
ngx_kqueue_init_conf, /* init configuration */
{
ngx_kqueue_add_event, /* add an event */
ngx_kqueue_del_event, /* delete an event */
ngx_kqueue_add_event, /* enable an event */
ngx_kqueue_del_event, /* disable an event */
NULL, /* add an connection */
NULL, /* delete an connection */
ngx_kqueue_process_changes, /* process the changes */
ngx_kqueue_process_events, /* process the events */
ngx_kqueue_init, /* init the events */
ngx_kqueue_done /* done the events */
}
};
/*
* The "change_list" should be declared as ngx_thread_volatile.
* However, the use of the change_list is localized in kqueue functions and
* is protected by the mutex so even the "icc -ipo" should not build the code
* with the race condition. Thus we avoid the declaration to make a more
* readable code.
*/
static struct kevent *change_list, *change_list0, *change_list1;
static struct kevent *event_list;
static ngx_uint_t max_changes, nchanges, nevents;
//初始化
static ngx_int_t
ngx_kqueue_init(ngx_cycle_t *cycle, ngx_msec_t timer)
{
ngx_kqueue_conf_t *kcf;
struct timespec ts;
#if (NGX_HAVE_TIMER_EVENT)
struct kevent kev;
#endif
kcf = ngx_event_get_conf(cycle->conf_ctx, ngx_kqueue_module);
if (ngx_kqueue == -1) {//有没有创建kqy
ngx_kqueue = kqueue();
if (ngx_kqueue == -1) {
ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_errno,
"kqueue() failed");
return NGX_ERROR;
}
#if (NGX_THREADS)
list_mutex = ngx_mutex_init(cycle->log, 0);
if (list_mutex == NULL) {
return NGX_ERROR;
}
kevent_mutex = ngx_mutex_init(cycle->log, 0);
if (kevent_mutex == NULL) {
return NGX_ERROR;
}
#endif
}
if (max_changes < kcf->changes) {//支持的改变大小
if (nchanges) {
ts.tv_sec = 0;
ts.tv_nsec = 0;
if (kevent(ngx_kqueue, change_list, (int) nchanges, NULL, 0, &ts)
== -1)
{
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"kevent() failed");
return NGX_ERROR;
}
nchanges = 0;
}
if (change_list0) {
ngx_free(change_list0);
}
change_list0 = ngx_alloc(kcf->changes * sizeof(struct kevent),
cycle->log);//分配空间
if (change_list0 == NULL) {
return NGX_ERROR;
}
if (change_list1) {
ngx_free(change_list1);
}
change_list1 = ngx_alloc(kcf->changes * sizeof(struct kevent),
cycle->log);
if (change_list1 == NULL) {
return NGX_ERROR;
}
change_list = change_list0;
}
max_changes = kcf->changes;
if (nevents < kcf->events) {
if (event_list) {
ngx_free(event_list);
}
event_list = ngx_alloc(kcf->events * sizeof(struct kevent), cycle->log);
if (event_list == NULL) {
return NGX_ERROR;
}
}
ngx_event_flags = NGX_USE_ONESHOT_EVENT
|NGX_USE_KQUEUE_EVENT
|NGX_USE_VNODE_EVENT;
#if (NGX_HAVE_TIMER_EVENT)
if (timer) {
kev.ident = 0;
kev.filter = EVFILT_TIMER;
kev.flags = EV_ADD|EV_ENABLE;
kev.fflags = 0;
kev.data = timer;
kev.udata = 0;
ts.tv_sec = 0;
ts.tv_nsec = 0;
if (kevent(ngx_kqueue, &kev, 1, NULL, 0, &ts) == -1) {
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"kevent(EVFILT_TIMER) failed");
return NGX_ERROR;
}
ngx_event_flags |= NGX_USE_TIMER_EVENT;
}
#endif
#if (NGX_HAVE_CLEAR_EVENT)
ngx_event_flags |= NGX_USE_CLEAR_EVENT;
#else
ngx_event_flags |= NGX_USE_LEVEL_EVENT;
#endif
#if (NGX_HAVE_LOWAT_EVENT)
ngx_event_flags |= NGX_USE_LOWAT_EVENT;
#endif
nevents = kcf->events;
ngx_io = ngx_os_io;
ngx_event_actions = ngx_kqueue_module_ctx.actions;
return NGX_OK;
}
没啥特别的就是标准的初始化 分配空间。
增加event:
static ngx_int_t
ngx_kqueue_set_event(ngx_event_t *ev, ngx_int_t filter, ngx_uint_t flags)
{
struct kevent *kev;
struct timespec ts;
ngx_connection_t *c;
c = ev->data;
ngx_log_debug3(NGX_LOG_DEBUG_EVENT, ev->log, 0,
"kevent set event: %d: ft:%i fl:%04Xi",
c->fd, filter, flags);
if (nchanges >= max_changes) {//不够了
ngx_log_error(NGX_LOG_WARN, ev->log, 0,
"kqueue change list is filled up");
ts.tv_sec = 0;
ts.tv_nsec = 0;
if (kevent(ngx_kqueue, change_list, (int) nchanges, NULL, 0, &ts)//注入
== -1)
{
ngx_log_error(NGX_LOG_ALERT, ev->log, ngx_errno, "kevent() failed");
return NGX_ERROR;
}
nchanges = 0;
}
kev = &change_list[nchanges];//获取一个kev
kev->ident = c->fd;//设置为文件描述符
kev->filter = (short) filter;
kev->flags = (u_short) flags;
kev->udata = NGX_KQUEUE_UDATA_T ((uintptr_t) ev | ev->instance);
if (filter == EVFILT_VNODE) {
kev->fflags = NOTE_DELETE|NOTE_WRITE|NOTE_EXTEND
|NOTE_ATTRIB|NOTE_RENAME
#if (__FreeBSD__ == 4 && __FreeBSD_version >= 430000) \
|| __FreeBSD_version >= 500018
|NOTE_REVOKE
#endif
;
kev->data = 0;
} else {
#if (NGX_HAVE_LOWAT_EVENT)
if (flags & NGX_LOWAT_EVENT) {
kev->fflags = NOTE_LOWAT;
kev->data = ev->available;
} else {
kev->fflags = 0;
kev->data = 0;
}
#else
kev->fflags = 0;
kev->data = 0;
#endif
}
ev->index = nchanges;//设置index
nchanges++;
if (flags & NGX_FLUSH_EVENT) {//kevent flush
ts.tv_sec = 0;
ts.tv_nsec = 0;
ngx_log_debug0(NGX_LOG_DEBUG_EVENT, ev->log, 0, "kevent flush");
if (kevent(ngx_kqueue, change_list, (int) nchanges, NULL, 0, &ts)
== -1)
{
ngx_log_error(NGX_LOG_ALERT, ev->log, ngx_errno, "kevent() failed");
return NGX_ERROR;
}
nchanges = 0;
}
return NGX_OK;
}
static ngx_int_t
ngx_kqueue_add_event(ngx_event_t *ev, ngx_int_t event, ngx_uint_t flags)
{
ngx_int_t rc;
#if 0
ngx_event_t *e;
ngx_connection_t *c;
#endif
ev->active = 1;//标志使用
ev->disabled = 0;
ev->oneshot = (flags & NGX_ONESHOT_EVENT) ? 1 : 0;
ngx_mutex_lock(list_mutex);
rc = ngx_kqueue_set_event(ev, event, EV_ADD|EV_ENABLE|flags);//标记为add ENABLE
ngx_mutex_unlock(list_mutex);
return rc;
}
删除event:
static ngx_int_t
ngx_kqueue_del_event(ngx_event_t *ev, ngx_int_t event, ngx_uint_t flags)
{
ngx_int_t rc;
ngx_event_t *e;
ev->active = 0;//设置不活跃
ev->disabled = 0;
ngx_mutex_lock(list_mutex);
if (ev->index < nchanges
&& ((uintptr_t) change_list[ev->index].udata & (uintptr_t) ~1)
== (uintptr_t) ev)//运气不错 还没有压入
{
ngx_log_debug2(NGX_LOG_DEBUG_EVENT, ev->log, 0,
"kevent deleted: %d: ft:%i",
ngx_event_ident(ev->data), event);
/* if the event is still not passed to a kernel we will not pass it */
nchanges--;
if (ev->index < nchanges) {//不是最后一个
e = (ngx_event_t *)
((uintptr_t) change_list[nchanges].udata & (uintptr_t) ~1);
change_list[ev->index] = change_list[nchanges];
e->index = ev->index;//把最后一个提到当前位置
}
ngx_mutex_unlock(list_mutex);
return NGX_OK;
}
/*
* when the file descriptor is closed the kqueue automatically deletes
* its filters so we do not need to delete explicitly the event
* before the closing the file descriptor.
*/
if (flags & NGX_CLOSE_EVENT) {
ngx_mutex_unlock(list_mutex);
return NGX_OK;
}
if (flags & NGX_DISABLE_EVENT) {
ev->disabled = 1;
} else {
flags |= EV_DELETE;
}
rc = ngx_kqueue_set_event(ev, event, flags);
ngx_mutex_unlock(list_mutex);
return rc;
}
删除就是先判断下有没有被压入内核,没有的话,就干掉,有的话,就设置del flag去删除。
process_changes:
static ngx_int_t
ngx_kqueue_process_changes(ngx_cycle_t *cycle, ngx_uint_t try)
{
int n;
ngx_int_t rc;
ngx_err_t err;
struct timespec ts;
struct kevent *changes;
ngx_mutex_lock(kevent_mutex);
ngx_mutex_lock(list_mutex);
if (nchanges == 0) {
ngx_mutex_unlock(list_mutex);
ngx_mutex_unlock(kevent_mutex);
return NGX_OK;
}
changes = change_list;
if (change_list == change_list0) {
change_list = change_list1;
} else {
change_list = change_list0;
}
n = (int) nchanges;
nchanges = 0;
ngx_mutex_unlock(list_mutex);
ts.tv_sec = 0;
ts.tv_nsec = 0;
ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
"kevent changes: %d", n);
if (kevent(ngx_kqueue, changes, n, NULL, 0, &ts) == -1) {
err = ngx_errno;
ngx_log_error((err == NGX_EINTR) ? NGX_LOG_INFO : NGX_LOG_ALERT,
cycle->log, err, "kevent() failed");
rc = NGX_ERROR;
} else {
rc = NGX_OK;
}
ngx_mutex_unlock(kevent_mutex);
return rc;
}
把changes压入,然后选择一个空的changeless数组。
下面来对event的处理了:
ngx_kqueue_process_events
static ngx_int_t
ngx_kqueue_process_events(ngx_cycle_t *cycle, ngx_msec_t timer,
ngx_uint_t flags)
{
int events, n;
ngx_int_t i, instance;
ngx_uint_t level;
ngx_err_t err;
ngx_event_t *ev, **queue;
struct timespec ts, *tp;
if (ngx_threaded) {//是不是线程工作模式
if (ngx_kqueue_process_changes(cycle, 0) == NGX_ERROR) {
return NGX_ERROR;
}
n = 0;
} else {
n = (int) nchanges;//保存changes
nchanges = 0;
}
if (timer == NGX_TIMER_INFINITE) {//有没有超时时间
tp = NULL;
} else {
ts.tv_sec = timer / 1000;
ts.tv_nsec = (timer % 1000) * 1000000;
/*
* 64-bit Darwin kernel has the bug: kernel level ts.tv_nsec is
* the int32_t while user level ts.tv_nsec is the long (64-bit),
* so on the big endian PowerPC all nanoseconds are lost.
*/
#if (NGX_DARWIN_KEVENT_BUG)
ts.tv_nsec <<= 32;
#endif
tp = &ts;
}
ngx_log_debug2(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
"kevent timer: %M, changes: %d", timer, n);
events = kevent(ngx_kqueue, change_list, n, event_list, (int) nevents, tp);
err = (events == -1) ? ngx_errno : 0;//是否出错
if (flags & NGX_UPDATE_TIME || ngx_event_timer_alarm) {//是否需要更新时间
ngx_time_update();
}
ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
"kevent events: %d", events);
if (err) {
if (err == NGX_EINTR) {//代表啥都没有
if (ngx_event_timer_alarm) {
ngx_event_timer_alarm = 0;
return NGX_OK;
}
level = NGX_LOG_INFO;
} else {//错误
level = NGX_LOG_ALERT;
}
ngx_log_error(level, cycle->log, err, "kevent() failed");
return NGX_ERROR;
}
if (events == 0) {//等待超时
if (timer != NGX_TIMER_INFINITE) {
return NGX_OK;
}
ngx_log_error(NGX_LOG_ALERT, cycle->log, 0,
"kevent() returned no events without timeout");
return NGX_ERROR;
}
ngx_mutex_lock(ngx_posted_events_mutex);
for (i = 0; i < events; i++) {//遍历
ngx_kqueue_dump_event(cycle->log, &event_list[i]);
if (event_list[i].flags & EV_ERROR) {//出错了的
ngx_log_error(NGX_LOG_ALERT, cycle->log, event_list[i].data,
"kevent() error on %d filter:%d flags:%04Xd",
event_list[i].ident, event_list[i].filter,
event_list[i].flags);
continue;
}
#if (NGX_HAVE_TIMER_EVENT)
if (event_list[i].filter == EVFILT_TIMER) {//timer事件
ngx_time_update();
continue;
}
#endif
ev = (ngx_event_t *) event_list[i].udata;
switch (event_list[i].filter) {//判断事件类型
case EVFILT_READ:
case EVFILT_WRITE:
instance = (uintptr_t) ev & 1;
ev = (ngx_event_t *) ((uintptr_t) ev & (uintptr_t) ~1);
if (ev->closed || ev->instance != instance) {//如果说是关闭了 或者不一样
/*
* the stale event from a file descriptor
* that was just closed in this iteration
*/
ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
"kevent: stale event %p", ev);
continue;
}
if (ev->log && (ev->log->log_level & NGX_LOG_DEBUG_CONNECTION)) {
ngx_kqueue_dump_event(ev->log, &event_list[i]);
}
if (ev->oneshot) {//一次
ev->active = 0;
}
#if (NGX_THREADS)//线程相关先不考虑
if ((flags & NGX_POST_THREAD_EVENTS) && !ev->accept) {
ev->posted_ready = 1;
ev->posted_available = event_list[i].data;
if (event_list[i].flags & EV_EOF) {//eof
ev->posted_eof = 1;
ev->posted_errno = event_list[i].fflags;
}
ngx_locked_post_event(ev, &ngx_posted_events);
continue;
}
#endif
ev->available = event_list[i].data;
if (event_list[i].flags & EV_EOF) {//结束了
ev->pending_eof = 1;
ev->kq_errno = event_list[i].fflags;
}
ev->ready = 1;//设置ready
break;
case EVFILT_VNODE:
ev->kq_vnode = 1;
break;
case EVFILT_AIO:
ev->complete = 1;
ev->ready = 1;
break;
default:
ngx_log_error(NGX_LOG_ALERT, cycle->log, 0,
"unexpected kevent() filter %d",
event_list[i].filter);
continue;
}
if (flags & NGX_POST_EVENTS) {//消息发送处理
queue = (ngx_event_t **) (ev->accept ? &ngx_posted_accept_events:
&ngx_posted_events);
ngx_locked_post_event(ev, queue);
continue;
}
ev->handler(ev);//调用处理函数
}
ngx_mutex_unlock(ngx_posted_events_mutex);
return NGX_OK;
}
总体来说,对于event的处理逻辑还是很清晰了,相信小伙伴只要又网络编程经验,就能轻松看懂,所以我就只加上注释,对方法做个大致的说明,后面将会梳理下ngx_connection,ngs_listen,然后是ngx_request,最后在梳理模块的时候,把他们之间的关系串联起来。