在尝试用c++来调用tensorflow训练好的模型时确实花了一些时间,现在总结一下,以供后续的学习:
首先我想说明的一下是常见的tensorflow训练好的模型保存方式有两种:ckpt格式和pb格式,其中前者主要用于暂存我们训练的临时数据,避免发生意外导致训练终止,前面的努力全部白费掉了。而后者常用于将模型固化,提供离线预测,用户只要提供一个输入,通过模型就可以得到一个预测结果。很显然,我们想要的是后者。
下面就一个小栗子来详细说下具体的操作过程吧:
(1)训练生成pb文件
这里的图片是采用的猫狗识别的图片 ,先将图片转化成tfrecorder格式。
(为了方便打标签,这里我是将图片分成cat和dog两个文件夹放在file_dir路径下,根据自己情况调整)
import os
import numpy as np
from PIL import Image
import tensorflow as tf
def get_files(file_dir):
cat = []
label_cat = []
dog = []
label_dog = []
for file in os.listdir(file_dir):
pp=os.path.join(file_dir,file)
for pic in os.listdir(pp):
pic_path=os.path.join(pp,pic)
if file=="cat":
cat.append(pic_path)#读取所在位置名称
label_cat.append(0)#labels标签为0
else:
dog.append(pic_path)#读取所在位置名称
label_dog.append(1)#labels标签为1
print("There are %d cat \nThere are %d dod"%(len(cat),len(dog)))
image_list = np.hstack((cat,dog))
label_list = np.hstack((label_cat,label_dog))
temp = np.array([image_list,label_list])
temp = temp.transpose()#原来transpose的操作依赖于shape参数,对于一维的shape,转置是不起作用的.
np.random.shuffle(temp)#随机排列 注意调试时不用
image_list = list(temp[:,0])
label_list = list(temp[:,1])
label_list = [int(i) for i in label_list]
return image_list,label_list
def image2tfrecord(image_list,label_list,str_name):
len2 = len(image_list)
print("len=",len2)
writer = tf.python_io.TFRecordWriter(str_name)
for i in range(len2):
#读取图片并解码
image = Image.open(image_list[i])
image = image.resize((224,224))
#转化为原始字节
image_bytes = image.tobytes()
#创建字典
features = {}
#用bytes来存储image
features['image_raw'] = tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_bytes]))
# 用int64来表达label
features['label'] = tf.train.Feature(int64_list=tf.train.Int64List(value=[int(label_list[i])]))
#将所有的feature合成features
tf_features = tf.train.Features(feature=features)
#转成example
tf_example = tf.train.Example(features=tf_features)
#序列化样本
tf_serialized = tf_example.SerializeToString()
#将序列化的样本写入rfrecord
writer.write(tf_serialized)
writer.close()
if __name__=="__main__":
path="newdata"
img_list,label_list=get_files(path)
length=len(img_list )
ratio = 0.8
s = np.int(length * ratio)
train_img_list=img_list[:s]
train_lab_list=label_list[:s]
val_img_list=img_list[s:]
val_lab_list=label_list[s:]
image2tfrecord(train_img_list,train_lab_list,"train.tfrecords")
image2tfrecord(val_img_list,val_lab_list,"val.tfrecords")
接下来你会发现生成了两个文件,分别是train.tfrecorder和val.tfrecorder,这就是你的验证集和测试集,至于标签也包含在里面了。然后就是开始训练了:
import numpy as np
import math
import tensorflow as tf
from tensorflow.python.framework import graph_util
tra_data_dir = 'train.tfrecords'
val_data_dir = 'val.tfrecords'
max_learning_rate = 0.0002 #0.0002
min_learning_rate = 0.0001
decay_speed = 2000.0
lr = tf.placeholder(tf.float32)
learning_rate = lr
W = 224
H = 224
Channels = 3
n_classes = 2
def read_and_decode2stand(tfrecords_file, batch_size):
'''read and decode tfrecord file, generate (image, label) batches
Args:
tfrecords_file: the directory of tfrecord file
batch_size: number of images in each batch
Returns:
image_batch: 4D tensor - [batch_size, height, width, channel]
label_batch: 2D tensor - [batch_size, n_classes]
'''
# make an input queue from the tfrecord file
filename_queue = tf.train.string_input_producer([tfrecords_file])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
img_features = tf.parse_single_example(
serialized_example,
features={
'label': tf.FixedLenFeature([], tf.int64),
'image_raw': tf.FixedLenFeature([], tf.string),
})
image = tf.decode_raw(img_features['image_raw'], tf.uint8)
image = tf.reshape(image, [H, W,Channels])
image = tf.cast(image, tf.float32) * (1.0 /255)
image = tf.image.per_image_standardization(image)#standardization
# all the images of notMNIST are 200*150, you need to change the image size if you use other dataset.
label = tf.cast(img_features['label'], tf.int32)
image_batch, label_batch = tf.train.batch([image, label],
batch_size= batch_size,
num_threads= 64,
capacity = 2000)
#Change to ONE-HOT
label_batch = tf.one_hot(label_batch, depth= n_classes)
label_batch = tf.cast(label_batch, dtype=tf.int32)
label_batch = tf.reshape(label_batch, [batch_size, n_classes])
print(label_batch)
return image_batch, label_batch
def my_batch_norm(inputs):
scale = tf.Variable(tf.ones([inputs.get_shape()[-1]]),dtype=tf.float32)
beta = tf.Variable(tf.zeros([inputs.get_shape()[-1]]),dtype=tf.float32)
batch_mean = tf.Variable(tf.zeros([inputs.get_shape()[-1]]), trainable=False)
batch_var = tf.Variable(tf.ones([inputs.get_shape()[-1]]), trainable=False)
batch_mean, batch_var = tf.nn.moments(inputs,[0,1,2])
return inputs, batch_mean, batch_var, beta, scale
def build_network(height, width, channel):
x = tf.placeholder(tf.float32, shape=[None, height, width, channel], name="input") ####这个名称很重要!!!
y = tf.placeholder(tf.int32, shape=[None, n_classes], name="labels_placeholder")
def weight_variable(shape, name="weights"):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial, name=name)
def bias_variable(shape, name="biases"):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial, name=name)
def conv2d(input, w):
return tf.nn.conv2d(input, w, [1, 1, 1, 1], padding='SAME')
def pool_max(input):
return tf.nn.max_pool(input,
ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1],
padding='SAME',
name='pool1')
def fc(input, w, b):
return tf.matmul(input, w) + b
# conv1
with tf.name_scope('conv1_1') as scope:
kernel = weight_variable([3, 3, Channels, 64])
biases = bias_variable([64])
conv1_1 = tf.nn.bias_add(conv2d(x, kernel), biases)
inputs, pop_mean, pop_var, beta, scale = my_batch_norm(conv1_1)
conv_batch_norm = tf.nn.batch_normalization(inputs, pop_mean, pop_var, beta, scale, 0.001)
output_conv1_1 = tf.nn.relu(conv_batch_norm, name=scope)
with tf.name_scope('conv1_2') as scope:
kernel = weight_variable([3, 3, 64, 64])
biases = bias_variable([64])
conv1_2 = tf.nn.bias_add(conv2d(output_conv1_1, kernel), biases)
inputs, pop_mean, pop_var, beta, scale = my_batch_norm(conv1_2)
conv_batch_norm = tf.nn.batch_normalization(inputs, pop_mean, pop_var, beta, scale, 0.001)
output_conv1_2 = tf.nn.relu(conv_batch_norm, name=scope)
pool1 = pool_max(output_conv1_2)
# conv2
with tf.name_scope('conv2_1') as scope:
kernel = weight_variable([3, 3, 64, 128])
biases = bias_variable([128])
conv2_1 = tf.nn.bias_add(conv2d(pool1, kernel), biases)
inputs, pop_mean, pop_var, beta, scale = my_batch_norm(conv2_1)
conv_batch_norm = tf.nn.batch_normalization(inputs, pop_mean, pop_var, beta, scale, 0.001)
output_conv2_1 = tf.nn.relu(conv_batch_norm, name=scope)
with tf.name_scope('conv2_2') as scope:
kernel = weight_variable([3, 3, 128, 128])
biases = bias_variable([128])
conv2_2 = tf.nn.bias_add(conv2d(output_conv2_1, kernel), biases)
inputs, pop_mean, pop_var, beta, scale = my_batch_norm(conv2_2)
conv_batch_norm = tf.nn.batch_normalization(inputs, pop_mean, pop_var, beta, scale, 0.001)
output_conv2_2 = tf.nn.relu(conv_batch_norm, name=scope)
pool2 = pool_max(output_conv2_2)
# conv3
with tf.name_scope('conv3_1') as scope:
kernel = weight_variable([3, 3, 128, 256])
biases = bias_variable([256])
conv3_1 = tf.nn.bias_add(conv2d(pool2, kernel), biases)
inputs, pop_mean, pop_var, beta, scale = my_batch_norm(conv3_1)
conv_batch_norm = tf.nn.batch_normalization(inputs, pop_mean, pop_var, beta, scale, 0.001)
output_conv3_1 = tf.nn.relu(conv_batch_norm, name=scope)
with tf.name_scope('conv3_2') as scope:
kernel = weight_variable([3, 3, 256, 256])
biases = bias_variable([256])
conv3_2 = tf.nn.bias_add(conv2d(output_conv3_1, kernel), biases)
inputs, pop_mean, pop_var, beta, scale = my_batch_norm(conv3_2)
conv_batch_norm = tf.nn.batch_normalization(inputs, pop_mean, pop_var, beta, scale, 0.001)
output_conv3_2 = tf.nn.relu(conv_batch_norm, name=scope)
# with tf.name_scope('conv3_3') as scope:
# kernel = weight_variable([3, 3, 256, 256])
# biases = bias_variable([256])
# output_conv3_3 = tf.nn.relu(conv2d(output_conv3_2, kernel) + biases, name=scope)
pool3 = pool_max(output_conv3_2)
# '''
# # conv4
# with tf.name_scope('conv4_1') as scope:
# kernel = weight_variable([3, 3, 256, 512])
# biases = bias_variable([512])
# output_conv4_1 = tf.nn.relu(conv2d(pool3, kernel) + biases, name=scope)
#
# with tf.name_scope('conv4_2') as scope:
# kernel = weight_variable([3, 3, 512, 512])
# biases = bias_variable([512])
# output_conv4_2 = tf.nn.relu(conv2d(output_conv4_1, kernel) + biases, name=scope)
#
# with tf.name_scope('conv4_3') as scope:
# kernel = weight_variable([3, 3, 512, 512])
# biases = bias_variable([512])
# output_conv4_3 = tf.nn.relu(conv2d(output_conv4_2, kernel) + biases, name=scope)
#
# pool4 = pool_max(output_conv4_3)
#
# # conv5
# with tf.name_scope('conv5_1') as scope:
# kernel = weight_variable([3, 3, 512, 512])
# biases = bias_variable([512])
# output_conv5_1 = tf.nn.relu(conv2d(pool4, kernel) + biases, name=scope)
#
# with tf.name_scope('conv5_2') as scope:
# kernel = weight_variable([3, 3, 512, 512])
# biases = bias_variable([512])
# output_conv5_2 = tf.nn.relu(conv2d(output_conv5_1, kernel) + biases, name=scope)
#
# with tf.name_scope('conv5_3') as scope:
# kernel = weight_variable([3, 3, 512, 512])
# biases = bias_variable([512])
# output_conv5_3 = tf.nn.relu(conv2d(output_conv5_2, kernel) + biases, name=scope)
#
# pool5 = pool_max(output_conv5_3)
# '''
#fc6
with tf.name_scope('fc6') as scope:
shape = int(np.prod(pool3.get_shape()[1:]))
kernel = weight_variable([shape, 120])
#kernel = weight_variable([shape, 4096])
#biases = bias_variable([4096])
biases = bias_variable([120])
pool5_flat = tf.reshape(pool3, [-1, shape])
output_fc6 = tf.nn.relu(fc(pool5_flat, kernel, biases), name=scope)
#fc7
with tf.name_scope('fc7') as scope:
#kernel = weight_variable([4096, 4096])
#biases = bias_variable([4096])
kernel = weight_variable([120, 100])
biases = bias_variable([100])
output_fc7 = tf.nn.relu(fc(output_fc6, kernel, biases), name=scope)
#fc8
with tf.name_scope('fc8') as scope:
#kernel = weight_variable([4096, n_classes])
kernel = weight_variable([100, n_classes])
biases = bias_variable([n_classes])
output_fc8 = tf.nn.relu(fc(output_fc7, kernel, biases), name=scope)
finaloutput = tf.nn.softmax(output_fc8, name="softmax") ####这个名称很重要!!
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=finaloutput, labels=y))*1000
optimize = tf.train.AdamOptimizer(lr).minimize(cost)
prediction_labels = tf.argmax(finaloutput, axis=1, name="output") ####这个名称很重要!!!
read_labels = tf.argmax(y, axis=1)
correct_prediction = tf.equal(prediction_labels, read_labels)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
correct_times_in_batch = tf.reduce_sum(tf.cast(correct_prediction, tf.int32))
return dict(
x=x,
y=y,
lr=lr,
optimize=optimize,
correct_prediction=correct_prediction,
correct_times_in_batch=correct_times_in_batch,
cost=cost,
accuracy=accuracy,
)
def train_network(graph, batch_size, num_epochs, pb_file_path):
tra_image_batch, tra_label_batch = read_and_decode2stand(tfrecords_file=tra_data_dir,
batch_size= batch_size)
val_image_batch, val_label_batch = read_and_decode2stand(tfrecords_file=val_data_dir,
batch_size= batch_size)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
epoch_delta = 20
try:
for epoch_index in range(num_epochs):
learning_rate = min_learning_rate + (max_learning_rate - min_learning_rate) * math.exp(-epoch_index/decay_speed)
tra_images,tra_labels = sess.run([tra_image_batch, tra_label_batch])
accuracy,mean_cost_in_batch,return_correct_times_in_batch,_=sess.run([graph['accuracy'],graph['cost'],graph['correct_times_in_batch'],graph['optimize']], feed_dict={
graph['x']: tra_images,
graph['lr']:learning_rate,
graph['y']: tra_labels
})
if epoch_index % epoch_delta == 0:
# 开始在 train set上计算一下accuracy和cost
print("index[%s]".center(50,'-')%epoch_index)
print("Train: cost_in_batch:{},correct_in_batch:{},accuracy:{}".format(mean_cost_in_batch,return_correct_times_in_batch,accuracy))
# 开始在 test set上计算一下accuracy和cost
val_images, val_labels = sess.run([val_image_batch, val_label_batch])
mean_cost_in_batch,return_correct_times_in_batch = sess.run([graph['cost'],graph['correct_times_in_batch']], feed_dict={
graph['x']: val_images,
graph['y']: val_labels
})
print("***Val: cost_in_batch:{},correct_in_batch:{},accuracy:{}".format(mean_cost_in_batch,return_correct_times_in_batch,return_correct_times_in_batch/batch_size))
if epoch_index % 50 == 0:
constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ["output"])
with tf.gfile.FastGFile(pb_file_path, mode='wb') as f:
f.write(constant_graph.SerializeToString())
except tf.errors.OutOfRangeError:
print('Done training -- epoch limit reached')
finally:
coord.request_stop()
coord.join(threads)
sess.close()
if __name__=="__main__":
batch_size = 30
num_epochs = 1000
pb_file_path = "catdog.pb"
g = build_network(height=H, width=W, channel=3)
train_network(g, batch_size, num_epochs, pb_file_path)
这个训练模型采用的vgg16,至于层数你可以自己调节,这个版本网上很多的。其中的模型参数,图片大小可以根据你的需要来进行调节,需要注意的是在训练中注意给输入输出起一个名字啦!!!
接下来就是漫长的等待,等训练完了,你会发现这就生成了一个pb格式的文件。接下来我们可以来测试一下模型性能怎么样,
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import PIL.Image as Image
from skimage import transform
W = 224
H = 224
def recognize(jpg_path):
with tf.Graph().as_default():
output_graph_def = tf.GraphDef()
pb_file_path="catdog.pb"
with open(pb_file_path, "rb") as f:
output_graph_def.ParseFromString(f.read()) #rb
_ = tf.import_graph_def(output_graph_def, name="")
with tf.Session() as sess:
tf.global_variables_initializer().run()
input_x = sess.graph.get_tensor_by_name("input:0") ####这就是刚才取名的原因
print (input_x)
out_softmax = sess.graph.get_tensor_by_name("softmax:0")
print (out_softmax)
out_label = sess.graph.get_tensor_by_name("output:0")
print (out_label)
img = np.array(Image.open(jpg_path).convert('L'))
img = transform.resize(img, (H, W, 3))
plt.figure("fig1")
plt.imshow(img)
img = img * (1.0 /255)
img_out_softmax = sess.run(out_softmax, feed_dict={input_x:np.reshape(img, [-1, H, W, 3])})
print ("img_out_softmax:",img_out_softmax)
prediction_labels = np.argmax(img_out_softmax, axis=1)
print ("prediction_labels:",prediction_labels)
plt.show()
recognize("C:\\Users\\Administrator\\Desktop\\处理效果图\\11.jpg") ####修改成自己的图片路径
(2)调用
发现模型预测结果还不错,那就开始进入今天的主题啦!!!!!我们该怎样才能在Windows下通过c++来调用该模型呢?接下来就是见证奇迹开始的时候啦!!!别眨眼哦。
首先声明一下,
我的电脑配置是win10,vs是10版本的,我的python3是通过anaconda来安装的。
接下来我们首先做的当然是在vs里新建一个控制台程序或者MFC程序啦!然后再开始导入python库,这一步很重要,需要针对自己刚开始训练的环境来,由于我刚开始是在win64下训练的模型,下载的也是64位的tensorflow,所以我需要把我的vs环境切换到win64下,然后开始配置加载你电脑上的python库,具体操作如下图所示:
没有就选新建,然后你需要做的就是加载库
还有头文件
还有
其实
你打开自己的安装的python路径libs文件夹,你会发现你下面根本没有python36_d.lib文件,其实你需要做的就是将python36.lib拷贝重命名一份即可。
环境配置好了以后,你需要做的有两件事,那就是写一个cpp文件以及需要调用的py文件啦。其中cpp文件代码如下:
#include<iostream>
#include <Python.h>
#include<windows.h>
using namespace std;
void testImage(char * path)
{
try{
Py_Initialize();
PyEval_InitThreads();
PyObject*pFunc = NULL;
PyObject*pArg = NULL;
PyObject* module = NULL;
module = PyImport_ImportModule(“catmodel”);//myModel:Python文件名
if (!module) {
printf(“cannot open module!”);
Py_Finalize();
return ;
}
pFunc = PyObject_GetAttrString(module, “test_one_image”);//test_one_image:Python文件中的函数名
if (!pFunc) {
printf(“cannot open FUNC!”);
Py_Finalize();
return ;
}
//开始调用model
pArg = Py_BuildValue(“(s)”, path);
if (module != NULL) {
PyGILState_STATE gstate;
gstate = PyGILState_Ensure();
PyEval_CallObject(pFunc, pArg);
PyGILState_Release(gstate);
}
}
catch (exception& e)
{
cout << “Standard exception: ” << e.what() << endl;
}
}
int main()
{
char * path= “D:\\pycharm\\My-TensorFlow-tutorials-master\\01 cats vs dogs\\data\\train\\cat.1.jpg”;
testImage(path);
system(“pause”);
return 0;
}
而py文件如下:(
注意py文件名需要和cpp中对应,为了避免格式错误,可以先在终端下运行py文件检查是否存在格式错误.
)
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import PIL.Image as Image
from skimage import io, transform
def test_one_image(jpg_path):
print("进入模型")
with tf.Graph().as_default():
output_graph_def = tf.GraphDef()
pb_file_path="D:\\vs2010\\Project\\调用模型\\x64\\Release\\catdog.pb" ####换成你存放pb文件的路径
with open(pb_file_path, "rb") as f:
output_graph_def.ParseFromString(f.read()) #rb
_ = tf.import_graph_def(output_graph_def, name="")
print("2222")
with tf.Session() as sess:
tf.global_variables_initializer().run()
input_x = sess.graph.get_tensor_by_name("input:0")
print (input_x)
out_softmax = sess.graph.get_tensor_by_name("softmax:0")
print (out_softmax)
out_label = sess.graph.get_tensor_by_name("output:0")
print (out_label)
print("开始读图")
img = io.imread(jpg_path)
img = transform.resize(img, (224, 224, 3))
img_out_softmax = sess.run(out_softmax, feed_dict={input_x:np.reshape(img, [-1, 224, 224, 3])})
print("234234")
print ("img_out_softmax:",img_out_softmax)
prediction_labels = np.argmax(img_out_softmax, axis=1)
print ("prediction_labels:",prediction_labels)
将py文件放入到你c++新建的工程x64文件下
如果刚开始没有这个文件,你可以现在vs里面运行一下,无论报错,然后就可以看到这个文件了,至于是debug下还是release下就看你上面配置的环境了,为了方便你也可以将pb文件一起拷贝过来,虽然py文件里已经指定了pb的路径,这个需要保持一致。
接下来就是见证奇迹开始的时候啦,在vs下运行cpp文件,出现以下结果就表示你调用成功啦!
好的今天就先写到这了!!!
总结:
大家没有运行成功,一般先检查python环境是否配置正确,其次再检查调用的py文件是否存在格式错误,两者都正确的话,按照上面的步骤应该就行了,预祝各位成功.