import pandas as pd
    
    import numpy as np
    
    import seaborn as sns
    
    import matplotlib.pyplot as plt
   
    iris=pd.read_csv(“D:\Test\iris1.csv”)
    
    iris.describe()
   
    from sklearn.preprocessing import LabelEncoder
    
    iris[“style”]=LabelEncoder().fit_transform(iris[“style”].values.reshape(-1,1))
   
    from sklearn.preprocessing import StandardScaler
    
    column_list=[“sl”,”sw”,”pl”,”pw”]
    
    for i  in range(len(column_list)):
    
    iris[column_list[i]]=StandardScaler().fit_transform(iris[column_list[i]].values.reshape(-1,1))
   
    x=iris[[“sl”,”sw”,”pl”,”pw”]]
    
    y=iris[“style”]
   
#KMeans聚类
    from sklearn.cluster import KMeans
    
    kmeans=KMeans(n_clusters=4)
    
    kmeans.fit(x)
    
    pre_label=kmeans.labels_
    
    #print(pre_label)
    
    x0=x[pre_label==0]
    
    x1=x[pre_label&#
   
 
