参考nodic官方代码:
/*sha256.c文件内容*/
#include <stdlib.h>
#include "sha256.h"
#include "sdk_errors.h"
#include "sdk_common.h"
#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32 - (b))))
#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
/*
和8个哈希初值类似,这些常量是对自然数中前64个质数
(2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97…)
的立方根的小数部分取前32bit而来。
*/
static const uint32_t k[64] = {
0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
};
/**@brief Function for calculating the hash of a 64-byte section of data.
*
* @param[in,out] ctx Hash instance.
* @param[in] data Aray with data to be hashed. Assumed to be 64 bytes long.
*/
void sha256_transform(sha256_context_t *ctx, const uint8_t * data)
{
uint32_t a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
for (i = 0, j = 0; i < 16; ++i, j += 4)
m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
for ( ; i < 64; ++i)
m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
f = ctx->state[5];
g = ctx->state[6];
h = ctx->state[7];
for (i = 0; i < 64; ++i) {
t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
t2 = EP0(a) + MAJ(a,b,c);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
ctx->state[5] += f;
ctx->state[6] += g;
ctx->state[7] += h;
}
ret_code_t sha256_init(sha256_context_t *ctx)
{
VERIFY_PARAM_NOT_NULL(ctx);
ctx->datalen = 0;
ctx->bitlen = 0;
ctx->state[0] = 0x6a09e667;
ctx->state[1] = 0xbb67ae85;
ctx->state[2] = 0x3c6ef372;
ctx->state[3] = 0xa54ff53a;
ctx->state[4] = 0x510e527f;
ctx->state[5] = 0x9b05688c;
ctx->state[6] = 0x1f83d9ab;
ctx->state[7] = 0x5be0cd19;
return NRF_SUCCESS;
}
ret_code_t sha256_update(sha256_context_t *ctx, const uint8_t * data, size_t len)
{
VERIFY_PARAM_NOT_NULL(ctx);
if (((len > 0) && (data == NULL)))
{
return NRF_ERROR_NULL;
}
uint32_t i;
for (i = 0; i < len; ++i) {
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == 64) {
sha256_transform(ctx, ctx->data);
ctx->bitlen += 512;
ctx->datalen = 0;
}
}
return NRF_SUCCESS;
}
ret_code_t sha256_final(sha256_context_t *ctx, uint8_t * hash, uint8_t le)
{
uint32_t i;
VERIFY_PARAM_NOT_NULL(ctx);
VERIFY_PARAM_NOT_NULL(hash);
i = ctx->datalen;
// Pad whatever data is left in the buffer.
if (ctx->datalen < 56) {
ctx->data[i++] = 0x80;
while (i < 56)
ctx->data[i++] = 0x00;
}
else {
ctx->data[i++] = 0x80;
while (i < 64)
ctx->data[i++] = 0x00;
sha256_transform(ctx, ctx->data);
memset(ctx->data, 0, 56);
}
// Append to the padding the total message's length in bits and transform.
ctx->bitlen += (uint64_t)ctx->datalen * 8;
ctx->data[63] = ctx->bitlen;
ctx->data[62] = ctx->bitlen >> 8;
ctx->data[61] = ctx->bitlen >> 16;
ctx->data[60] = ctx->bitlen >> 24;
ctx->data[59] = ctx->bitlen >> 32;
ctx->data[58] = ctx->bitlen >> 40;
ctx->data[57] = ctx->bitlen >> 48;
ctx->data[56] = ctx->bitlen >> 56;
sha256_transform(ctx, ctx->data);
if (le)
{
for (i = 0; i < 4; ++i) {
hash[i] = (ctx->state[7] >> (i * 8)) & 0x000000ff;
hash[i + 4] = (ctx->state[6] >> (i * 8)) & 0x000000ff;
hash[i + 8] = (ctx->state[5] >> (i * 8)) & 0x000000ff;
hash[i + 12] = (ctx->state[4] >> (i * 8)) & 0x000000ff;
hash[i + 16] = (ctx->state[3] >> (i * 8)) & 0x000000ff;
hash[i + 20] = (ctx->state[2] >> (i * 8)) & 0x000000ff;
hash[i + 24] = (ctx->state[1] >> (i * 8)) & 0x000000ff;
hash[i + 28] = (ctx->state[0] >> (i * 8)) & 0x000000ff;
}
}
else
{
// Since this implementation uses little endian uint8_t ordering and SHA uses big endian,
// reverse all the uint8_ts when copying the final state to the output hash.
for (i = 0; i < 4; ++i) {
hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
}
}
return NRF_SUCCESS;
}
/*sha256.h文件*/
#ifndef SHA256_H
#define SHA256_H
#include <stdint.h>
#include "sdk_errors.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef struct {
uint8_t data[64];
uint32_t datalen;
uint64_t bitlen;
uint32_t state[8];
} sha256_context_t;
ret_code_t sha256_init(sha256_context_t *ctx);
ret_code_t sha256_update(sha256_context_t *ctx, const uint8_t * data, const size_t len);
ret_code_t sha256_final(sha256_context_t *ctx, uint8_t * hash, uint8_t le);
#ifdef __cplusplus
}
#endif
#endif // SHA256_H
/*main.c文件*/
int main(){
uint8_t buf_data[32];//加密过后的信息
unsigned char c_data[] = {"abcd"};//待加密的信息
sha256_context_t ctx_data;
sha256_init(&ctx_data);
sha256_update(&ctx_data, c_data, sizeof(c_data));//注意长度
sha256_final(&ctx_data, buf_data);//256bit(32byte)的信息摘要
}
版权声明:本文为wanjietiam原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。