前言
这是前几个学期面向对象程序设计课程的大作业,这两天完完整整的重写了一遍,这份作业能够很好的涵盖C++的基础部分,以此来复习C++的基础语法部分,忘记有关功能的实现时可以查看源码
实现的涉及核心内容包括但不限于:
动态内存,类与对象的基本使用,深拷贝,运算符的重载(全局函数和成员函数),泛型(模板), 文件和流…
参考:
《C++ Primer》中文第五版
W3Cchool C++教程
模板约束
https://blog.csdn.net/guxch/article/details/110795047
https://www.zhihu.com/question/403570202/answer/1351024448
逆矩阵求解算法参考
https://blog.csdn.net/qithon/article/details/80100029?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522165873888016781667819434%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=165873888016781667819434&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2
all
sobaiduend~default-1-80100029-null-null.142
https://blog.csdn.net/m0_46201544/article/details/125012646?ops_request_misc=&request_id=&biz_id=102&utm_term=%20C++%20
矩阵幂运算,快速幂算法参考
https://blog.csdn.net/qq_34401994/article/details/104646211
高斯滤波算法参考
https://blog.csdn.net/dcrmg/article/details/52304446?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522162400765316780366538782%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=162400765316780366538782&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2
all
baidu_landing_v2~default-1-52304446.pc_search_result_before_js&utm_term=c%2B%2B
完整代码
//
// Created by Xmx on 2022/7/26.
//
#include <iostream>
#include <cmath>
#include <fstream>
#include <initializer_list>
using namespace std;
template <class T>
class Matrix
{
public:
// 无参构造函数
Matrix() {}
// 有参构造函数
Matrix(int rows, int cols, T init_value)
{
set_rows(rows);
set_cols(cols);
new_mat();
for (int i = 0; i < get_rows(); ++i)
for (int j = 0; j < get_cols(); ++j)
mat_[i][j] = init_value;
}
// 析构函数
~Matrix()
{
cout << "~Matrix" << endl;
delete_mat();
}
// done:
// 有参构造函数, 使用初始化列表
Matrix(initializer_list<initializer_list<T>> listList)
{
rows_ = (listList.begin())->size();
cols_ = listList.size();
new_mat(); // 分配内存
auto pr = listList.begin();
auto pc = pr->begin();
for (int i = 0; i < get_rows(); i++, pr++)
{
pc = pr->begin();
for (int j = 0; j < get_cols(); j++, pc++)
mat_[i][j] = *pc;
}
}
// 重载拷贝构造函数, 实现深拷贝
Matrix<T>(const Matrix<T> &matrix)
{
this->rows_ = matrix.get_rows();
this->cols_ = matrix.get_cols();
new_mat(); // 为拷贝接受对象开辟内存
//拷贝数值
for (int i = 0; i < matrix.get_rows(); ++i)
for (int j = 0; j < matrix.get_cols(); ++j)
mat_[i][j] = matrix.mat_[i][j];
}
//! 重载= 必须通过成员函数实现
Matrix<T> &operator=(const Matrix<T> &matrix)
{
// 若其在堆区, 先释放mat_指针,再深拷贝即可
if (mat_ != NULL)
{
delete mat_;
mat_ = NULL;
}
// 深拷贝
this->rows_ = matrix.get_rows();
this->cols_ = matrix.get_cols();
new_mat();
for (int i = 0; i < matrix.get_rows(); ++i)
for (int j = 0; j < matrix.get_cols(); ++j)
mat_[i][j] = matrix.mat_[i][j];
return *this;
}
bool operator==(const Matrix<T> &other)
{
if (this->rows_ == other.rows_ && this->cols_ == other.cols_)
{
if (this->mat_ != NULL && other.mat_ != NULL)
{
for (int i = 0; i < this->rows_; i++)
for (int j = 0; j < this->cols_; j++)
if (this->mat_[i][j] != other.mat_[i][j])
return false;
return true;
}
else
return false;
}
else
return false;
}
bool operator!=(const Matrix<T> &other)
{
if (this->rows_ == other.rows_ && this->cols_ == other.cols_)
{
if (this->mat_ != NULL && other.mat_ != NULL)
{
for (int i = 0; i < this->rows_; i++)
for (int j = 0; j < this->cols_; j++)
if (mat_[i][j] != other.mat_[i][j])
return true;
return true;
}
else
return true;
}
else
return true;
}
// 申请矩阵空间
void new_mat()
{
this->mat_ = new T *[get_rows()];
for (int i = 0; i < get_rows(); i++)
{
this->mat_[i] = new T[get_cols()];
}
}
// 释放矩阵空间
void delete_mat()
{
if (mat_ != NULL)
{
for (int i = 0; i < get_rows(); i++)
delete[] this->mat_[i];
delete[] mat_;
mat_ = NULL;
}
}
// * ------------------------- 访问器与修改器 ---------------------------- *
void set_rows(int rows)
{
this->rows_ = rows;
}
void set_cols(int cols)
{
this->cols_ = cols;
}
int get_rows() const
{
return this->rows_;
}
int get_cols() const
{
return this->cols_;
}
//* --------------------------- 文件和流 -------------------------------- *
void load_matrix(string filename)
{
ifstream input;
// input>>noskipws; //! 不忽略空格, 为了方便写入矩阵,不跳过空格
input.open(filename);
string read_contents = "";
string temp;
//! 读写模板
// while (input>>temp)
// {
// /* code */
// read_contents += temp;
// }
// cout << read_contents << endl;
if (input.is_open())
{
int rows, cols;
input >> rows >> cols;
set_rows(rows);
set_cols(cols);
new_mat();
for (int i = 0; i < get_rows(); i++)
for (int j = 0; j < get_cols(); j++)
input >> mat_[i][j];
cout << "read the txt successfully" << endl;
cout << "rows: " << rows << " cols: " << cols << endl;
input.close();
cout << "The Matrix has been read successfully: " << endl;
cout << *this << endl;
}
else
cout << "File Opening Failed" << endl;
}
void write_matrix(string filename)
{
ofstream output(filename);
if (output.is_open())
{
output << *this << endl;
output.close();
cout << "Matrix has been written" << endl;
}
else
cout << "File Opening Failed" << endl;
}
// void show_mat()
// {
// cout << endl;
// for (int i = 0; i < get_rows(); i++)
// {
// for (int j = 0; j < get_cols(); j++)
// {
// cout << this->mat_[i][j] << " ";
// }
// cout << endl;
// }
// cout << endl;
// }
// * ------------------------ 矩阵的基本运算函数 -------------------------- *
void swap_element(T &element1, T &element2)
{
T temp = element1;
element1 = element2;
element2 = temp;
}
// 交换两行
void swap_rows(int row1, int row2)
{
for (int i = 0; i < get_cols(); i++)
swap_element(mat_[row1][i], mat_[row2][i]);
}
// 交换两列
void swap_cols(int col1, int col2)
{
for (int i = 0; i < get_rows(); i++)
swap_element(mat_[i][col1], mat_[i][col2]);
}
// * ------------------------- 运算符重载的友元声明 ------------------------ *
template <class U>
friend istream &operator>>(istream &in, Matrix<U> &A); //! >>
template <class U>
friend ostream &operator<<(ostream &out, Matrix<U> &A); //! <<
template <class U>
friend Matrix<U> operator+(const Matrix<U> &A, const U &k); //! A + k
template <class U>
friend Matrix<U> operator+(const U &k, const Matrix<U> &A); //! k + A
template <class U>
friend Matrix<U> operator-(const Matrix<U> &A, const U &k); //! A - k
template <class U>
friend Matrix<U> operator-(const U &k, const Matrix<U> &A); //! k - A
template <class U>
friend Matrix<U> operator*(const U &k, const Matrix<U> &A); //! k * A
template <class U>
friend Matrix<U> operator*(const Matrix<U> &A, const U &k); //! A * k
template <class U>
friend Matrix<U> operator/(const U &k, const Matrix<U> &A); //! k / A
template <class U>
friend Matrix<U> operator/(const Matrix<U> &A, const U &k); //! A / k
template <class U>
friend Matrix<U> operator+(const Matrix<U> &A, const Matrix<U> &B); //! A + B
template <class U>
friend Matrix<U> operator-(const Matrix<U> &A, const Matrix<U> &B); //! A - B
template <class U>
friend Matrix<U> operator*(const Matrix<U> &A, const Matrix<U> &B); //! A * B
template <class U>
friend Matrix<U> operator/(const Matrix<U> &A, const Matrix<U> &B); //! A / B
template <class U>
friend Matrix<U> operator^(const Matrix<U> &A, const U &B); //! A^k
//* ------------------------- 静态成员函数生成基本矩阵 --------------------------- */
// 零矩阵
static Matrix<T> zeros(int rows, int cols)
{
return Matrix<T>(rows, cols, 0);
}
// 单位矩阵
static Matrix<T> units(int size)
{
Matrix<T> result = Matrix<T>::zeros(size, size); // 先生成一个size大小的 "方零矩阵"
for (int i = 0; i < result.get_cols(); i++) // 修改对角线元素
result.mat_[i][i] = 1;
return result;
}
//! done: 求逆矩阵(高斯消元实现)
template <class U>
static Matrix<U> inverse(const Matrix<U> &A)
{
double eps = 1e-6;
// 返回double类型,防止精度丢失
Matrix<double> temp = Matrix<double>::augmented_E(A);
for (int i = 0; i < temp.get_rows(); i++)
{
if (fabs(temp.mat_[i][i]) < eps)
{
int j;
for (j = i + 1; j < temp.get_rows(); j++)
if (fabs(temp.mat_[i][j]) > eps)
break;
}
// 初等变换实现消元
for (int i = 0; i < temp.get_rows(); i++)
{
double t = temp.mat_[i][i];
// 将temp.mat_[i][i] = 1;
for (int j = i; j < temp.get_cols(); j++)
temp.mat_[i][j] /= t;
for (int j = i + 1; j < temp.get_rows(); j++)
{
double tt = -1 * (temp.mat_[j][i] / temp.mat_[i][i]);
for (int k = i; k < temp.get_cols(); k++)
temp.mat_[j][k] += tt * temp.mat_[i][k];
}
}
}
for (int i = temp.get_rows() - 1; i >= 0; i--)
{
for (int j = i - 1; j >= 0; j--)
{
double tt = -1 * (temp.mat_[j][i] / temp.mat_[i][i]);
for (int k = i; k < temp.get_cols(); k++)
temp.mat_[j][k] += tt * temp.mat_[i][k];
}
}
// 将temp左半部分传给result
Matrix<double> result(A.get_rows(), A.get_cols(), 0);
for (int i = 0; i < result.get_rows(); i++)
for (int j = result.get_rows(); j < 2 * result.get_rows(); j++)
result.mat_[i][j - result.get_rows()] = temp.mat_[i][j];
// cout<<temp;
return result;
}
//! done: 返回A的增广矩阵A|E
static Matrix<T> augmented_E(const Matrix<T> &A)
{
int rows = A.get_rows();
int cols = A.get_rows() + A.get_cols();
Matrix<T> result = Matrix<T>(rows, cols, 0);
for (int i = 0; i < result.get_rows(); i++)
{
for (int j = 0; j < result.get_cols(); j++)
{
if (j < A.get_cols())
{
result.mat_[i][j] = A.mat_[i][j];
}
else
{
if (j == A.get_cols() + i)
result.mat_[i][j] = 1;
else
result.mat_[i][j] = 0;
}
}
}
return result;
}
//! done: 增广矩阵A' , 返回A的增广矩阵
static Matrix<T> augmented(const Matrix<T> &A, const T *input, int len)
{
int rows = A.get_rows();
int cols = A.get_rows() + 1;
for (int i = 0; i < len; i++)
cout << input[i] << " ";
// input数组长度为A的行数满足条件,可以生成增广矩阵
if (len == rows)
{
Matrix<T> result = Matrix<T>(rows, cols, 0);
for (int i = 0; i < result.get_rows(); i++)
{
for (int j = 0; j < result.get_cols(); j++)
{
if (j < A.get_cols())
result.mat_[i][j] = A.mat_[i][j];
else
result.mat_[i][j] = input[i];
}
}
return result;
}
else
return Matrix<T>::zeros(1, 1);
}
//! done: 高斯消元(初等变换法)求解线性方程
static string Gauss_eliminate(const Matrix<T> &A)
{
Matrix<T> temp = A; // 用于计算的矩阵
double ratio = 0, eps = 1e-6; // 默认最小主元素
int n = temp.get_rows(); // 方程个数
double result[n]; // 存储结果的数组
string result_string = "";
// 消元
for (int k = 0; k < (n); k++)
{
for (int i = (k + 1); i < n; i++)
{
if (abs(temp.mat_[k][k]) < eps)
return "No solution!";
double ratio = temp.mat_[i][k] / temp.mat_[k][k];
for (int j = (k + 1); j < (n + 1); j++)
temp.mat_[i][j] -= ratio * temp.mat_[k][j];
temp.mat_[i][k] = 0;
}
}
result[n - 1] = temp.mat_[n - 1][n] / temp.mat_[n - 1][n - 1]; // 回代
for (int i = (n - 2); i >= 0; i--)
{
double sum = 0;
for (int j = (i + 1); j < n; j++)
{
sum += temp.mat_[i][j] * result[j];
result[i] = (temp.mat_[i][n] - sum) / temp.mat_[i][i];
}
}
// 生成结果字符串
for (int i = 0; i < n; i++)
result_string += "\nresult[" + to_string(i) + "]=" + to_string(result[i]) + "\n";
return result_string;
}
//! done: 高斯核矩阵
static Matrix<double> Gauss_kernel(int size, double sigma)
{
Matrix<double> result = Matrix<double>::zeros(size, size);
const double PI = 4.0 * atan(1.0); // 圆周率赋值
int center = size / 2;
double sum = 0;
for (int i = 0; i < size; i++)
{
for (int j = 0; j < size; j++)
{
result.mat_[i][j] = (1 / (2 * PI * sigma * sigma)) *
exp(-((i - center) * (i - center) + (j - center) * (j - center)) /
(2 * sigma * sigma));
sum += result.mat_[i][j];
}
}
return result;
}
//! done: H 为高斯滤波核矩阵, A 需要高斯滤波的矩阵, 返回滤波后的矩阵
static Matrix<double> Gauss_filter(const Matrix<T> &A, const Matrix<double> &H)
{
Matrix<double> result = Matrix::zeros(A.get_rows(), A.get_cols());
for (int i = 0; i < result.get_rows(); i++)
for (int j = 0; j < result.get_cols(); j++)
result.mat_[i][j] = A.mat_[i][j] * H.mat_[i][j];
return result;
}
private:
int rows_;
int cols_;
T **mat_;
};
//* --------------------------- 运算符重载 ------------------------------------- */
//! done: 重载>>
template <class U>
istream &operator>>(istream &in, Matrix<U> &A)
{
cout << "Input the rows and columns for the matrix" << endl;
in >> A.rows_ >> A.cols_;
A.new_mat();
for (int i = 0; i < A.get_rows(); i++)
for (int j = 0; j < A.get_cols(); j++)
in >> A.mat_[i][j];
return in;
}
//! done: 重载<<
template <class U>
ostream &operator<<(ostream &out, Matrix<U> &A)
{
for (int i = 0; i < A.get_rows(); i++)
{
out << " [";
for (int j = 0; j < A.get_cols(); j++)
out << " " << A.mat_[i][j];
out << " ]" << endl;
}
out << endl;
return out;
}
//! done A + k
template <class U>
Matrix<U> operator+(const Matrix<U> &A, const U &k)
{
if (A.get_cols() == A.get_rows()) // A 为方针,可以运算
{
Matrix<U> result = Matrix<U>(A);
for (int i = 0; i < result.get_cols(); i++) // A + kE
result.mat_[i][i] += k;
return result;
}
else // 无法运算,返回1×1单位矩阵
return Matrix<U>::zeros(1, 1);
}
//! done k + A
template <class U>
Matrix<U> operator+(const U &k, const Matrix<U> &A)
{
if (A.get_cols() == A.get_rows()) // A 为方针,可以运算
{
Matrix<U> result = Matrix<U>(A);
for (int i = 0; i < result.get_cols(); i++) // kE + A
result.mat_[i][i] += k;
return result;
}
else // 无法运算,返回1×1单位矩阵
return Matrix<U>::zeros(1);
}
//! done: A - k
template <class U>
Matrix<U> operator-(const Matrix<U> &A, const U &k)
{
if (A.get_cols() == A.get_rows()) // A 为方针,可以运算
{
Matrix<U> result = Matrix<U>(A);
for (int i = 0; i < result.get_cols(); i++) // A - kE
result.mat_[i][i] -= k;
return result;
}
else // 无法运算,返回1×1单位矩阵
return Matrix<U>::zeros(1);
}
//! done k - A
template <class U>
Matrix<U> operator-(const U &k, const Matrix<U> &A)
{
if (A.get_cols() == A.get_rows()) // A 为方针,可以运算
{
Matrix<U> result = Matrix<U>(A);
for (int i = 0; i < result.get_cols(); i++) // kE - A
for (int j = 0; j < result.get_cols(); j++)
{
if (i == j)
result.mat_[i][j] = k - result.mat_[i][j];
else
result.mat_[i][j] = -result.mat_[i][j];
}
return result;
}
else // 无法运算,返回1×1单位矩阵
return Matrix<U>::zeros(1);
}
//! done: k * A
template <class U>
Matrix<U> operator*(const U &k, const Matrix<U> &A)
{
Matrix<U> result = Matrix<U>(A);
for (int i = 0; i < result.get_rows(); i++)
for (int j = 0; j < result.get_cols(); j++)
result.mat_[i][j] = result.mat_[i][j] * k;
return result;
}
//! done: A * k
template <class U>
Matrix<U> operator*(const Matrix<U> &A, const U &k)
{
Matrix<U> result = Matrix<U>(A);
for (int i = 0; i < result.get_rows(); i++)
for (int j = 0; j < result.get_cols(); j++)
result.mat_[i][j] = result.mat_[i][j] * k;
return result;
}
//! done: k / A
template <class U>
Matrix<U> operator/(const U &k, const Matrix<U> &A)
{
// k / A = kE * A^-1
// A 为方针,可以运算
if (A.get_rows() == A.get_cols())
{
Matrix<U> result = Matrix<U>(A);
Matrix<U> kE = Matrix<U>::units(A.get_rows());
kE = kE * k; // 生成kE
return kE * Matrix<U>::inverse(A);
}
else // 无法运算,返回零矩阵
return Matrix<U>::zeros(1, 1);
}
//! done: A / k
template <class U>
Matrix<U> operator/(const Matrix<U> &A, const U &k)
{
Matrix<U> result = Matrix<U>(A);
for (int i = 0; i < result.get_rows(); i++)
for (int j = 0; j < result.get_cols(); j++)
result.mat_[i][j] = result.mat_[i][j] / k;
return result;
}
//! done: A + B
template <class U>
Matrix<U> operator+(const Matrix<U> &A, const Matrix<U> &B)
{
// A 与 B 维度相同
if ((A.get_cols() == B.get_cols()) && (A.get_rows() == B.get_rows()))
{
Matrix<U> result = Matrix<U>(A);
for (int i = 0; i < result.get_rows(); i++)
for (int j = 0; j < B.get_cols(); j++)
result.mat_[i][j] += B.mat_[i][j];
return result;
}
else // 无法运算,返回零矩阵
return Matrix<U>::zeros(1, 1);
}
//! done: A - B
template <class U>
Matrix<U> operator-(const Matrix<U> &A, const Matrix<U> &B)
{
// A 与 B 维度相同
if ((A.get_cols() == B.get_cols()) && (A.get_rows() == B.get_rows()))
{
Matrix<U> result = Matrix<U>(A);
for (int i = 0; i < result.get_rows(); i++)
for (int j = 0; j < B.get_cols(); j++)
result.mat_[i][j] -= B.mat_[i][j];
return result;
}
else // 无法运算,返回零矩阵
return Matrix<U>::zeros(1, 1);
}
//! done: A * B
template <class U>
Matrix<U> operator*(const Matrix<U> &A, const Matrix<U> &B)
{
// 先判断能否运算
if (A.get_cols() == B.get_rows())
{
Matrix<U> result = Matrix<U>(A.get_rows(), B.get_cols(), 0);
for (int i = 0; i < result.get_rows(); i++)
for (int j = 0; j < result.get_cols(); j++)
for (int k = 0; k < result.get_cols(); k++) // 所在行所在列元素相乘
result.mat_[i][j] += A.mat_[i][k] * B.mat_[k][j];
return result;
}
else // 无法运算,返回零矩阵
return Matrix<U>::zeros(1, 1);
}
//! done: A / B
template <class U>
Matrix<U> operator/(const Matrix<U> &A, const Matrix<U> &B)
{
// A / B == A * B^-1
// 先判断能否运算
if (A.get_cols() == B.get_rows())
return A * (Matrix<U>::inverse(B));
else
return Matrix<U>::zeros(1, 1);
}
//! done: A^k
template <class U>
Matrix<U> operator^(const Matrix<U> &A, int k)
{
Matrix<U> result = Matrix<U>::units(A.get_cols());
Matrix<U> temp = A;
// 快速幂进行运算
while (k)
{
if (k % 2)
result = result * temp;
k /= 2;
temp = temp * temp;
}
return result;
}
int main()
{
// Matrix<int> matrix1(3, 3, 3);
// Matrix<double> matrix1_4(3, 4, 4);
// Matrix<int> matrix2(4, 4, 4);
// // Matrix<double> matrix3 = { {5,5,-1,7,54},{4,-9,20,12,-6},{9,-18,-3,1,21},{ 61,-8,-10,3,13 },{ 29,-28,-1,4,14 } };
// // Matrix<int> matrix4 = Matrix<int>(matrix1);
// Matrix<double> matrix5 = matrix1_4 * (0.3);
// Matrix<int> matrix6 = Matrix<int>::units(3);
// matrix1.show_mat();
// matrix2.show_mat();
// // matrix3.show_mat();
// // matrix4.show_mat();
// matrix5.show_mat();
// matrix6.show_mat();
// cout<<matrix6;
// Matrix<double> matrix = Matrix<double>::augmented_E(matrix1_4);
// matrix.swap_rows(0,1);
// cout << matrix;
// Matrix<double> matrix10;
// cin >> matrix10;
// Matrix<double> temp = Matrix<double>::inverse(matrix10);
// Matrix<double> temp1 = Matrix<double>::inverse(matrix10);
// cout << temp;
// temp = temp ^ 2;
// cout<<temp;
// temp1 = temp1 * temp1;
// cout<<temp1;
// cout <<( matrix != matrix);
//! 测试=, ==, != 重载
Matrix<int> m1(3, 3, 3);
Matrix<int> m2(3, 3, 4);
cout << m1 << m2 << endl;
cout << (m1 == m2);
// double input[] = {6,18,7};
// cout<<"len = "<< sizeof(input)/sizeof(input[0])<<endl;
// Matrix<double> Equations;
// cin >> Equations;
// Equations = Matrix<double>::augmented(Equations,input,sizeof(input)/sizeof(input[0]));
// cout<< Equations;
// cout<< Matrix<double>::Gauss_eliminate(Equations);
//! 测试高斯滤波
Matrix<double> temp(5, 5, 100);
cout << temp << endl;
temp = Matrix<double>::Gauss_filter(temp, Matrix<double>::Gauss_kernel(5, 5));
cout << temp;
//! 测试文件和流
// Matrix<double> matrix_IO;
// matrix_IO.load_matrix("input.txt");
// matrix_IO.write_matrix("output.txt");
// 测试初始化列表
initializer_list<initializer_list<int>> initializerL_mat = {{1, 2, 3}, {2, 2, 2}, {3, 3, 3}};
Matrix<int> matrix_initializer(initializerL_mat);
cout << matrix_initializer;
}
作业要求:
- 实现一个矩阵类,包含以下功能:
基本成员
a) rows_行,cols_列,double** mat,矩阵元素
b) get_rows()返回行数;get_cols()返回列数
- 矩阵类的构造函数
a) 默认构造函数,生成一个1,1列的矩阵
Matrix mat;
b) 生成行列分别为rows, cols的矩阵
Matrix mat(rows, cols);
c) 生成行列分别为rows, cols,初始值为init_value的矩阵
Matrix mat(rows, cols, init_value);
d) 利用初始化列表生成矩阵
Matrix mat = {
{1,2,3,4}, {5,6,7,8}};
-
析构函数
-
拷贝构造函数与赋值运算符函数(实现深拷贝)
-
实现基本运算符重载函数,其中 A 表示矩阵,
k
表示标量(一个实数)。如表1所示。 -
静态函数生成基本矩阵
a) 零矩阵 Matrix::zeros(rows, cols);
b) 单位矩阵 Matrix::eye(size);
c) 均匀分布随机矩阵[
1]
Matrix::randu(rows, cols);
d) 高斯分布随机矩阵[
2]
Matrix::randn(rows, cols);
矩阵类基本运算符
操作符 | 说明 |
---|---|
A + k | 矩阵对应元素加上标量 |
k + A | 标量加上矩阵对应元素 |
A – k | 矩阵对应元素减去标量 |
A ∗ k | 矩阵对应元素乘以标量 |
k ∗ A | 标量乘以矩阵对应元素 |
A + B | 矩阵对应元素加法 |
A – B | 矩阵对应元素减法 |
A * B | 矩阵乘法 |
A % B | 矩阵对应元素乘法 |
A / B | 矩阵对应元素乘法 |
A ^ k | 矩阵 A 的 k 次幂 (可以采用矩阵快速幂实现) |
- 应用于方程组的矩阵函数
a) 增广矩阵 Matrix Ab = AugmentMatrix(A, B);
对于矩阵A,B的构成的增广矩阵Ab为
其中
A
,
B
矩阵的行数数应保证相同。
b) 逆矩阵 Matrix IA = Inverse(A);
逆矩阵可以通过对增广矩阵IA做高斯消元法实现,其中,I 是矩阵A的同型单位矩阵。
c) 实现高斯消元法求解线性方程组 Matrix x = GaussianElimination(A, b);
- 高斯滤波
a) 生成高斯核 Matrix H = GaussianKernel(k, sigma); 其中k表示高斯核尺寸, sigma表示方差。
b) 实现高斯滤波 Matrix B = GaussianFilter(A, H)
- 实现成员函数实现将矩阵读写函数。比如
Matrix mat;
mat.Load(filename);
mat.Write(filename);