四元数、罗德里格斯公式、欧拉角、旋转矩阵推导和资料

  • Post author:
  • Post category:其他




写在前面

1、本文内容

四元数、罗德里格斯公式、欧拉角、旋转矩阵推导和资料

2、转载请注明出处:

https://blog.csdn.net/qq_41102371/article/details/126002167



资料

四元数


Understanding Quaternions 中文翻译《理解四元数》 https://www.qiujiawei.com/understanding-quaternions/



http://mars.cs.umn.edu/tr/reports/Trawny05b.pdf


几种三维空间旋转的表达方式转换


三维旋转:欧拉角、四元数、旋转矩阵、轴角之间的转换 https://zhuanlan.zhihu.com/p/45404840



彻底搞懂“旋转矩阵/欧拉角/四元数”,让你体会三维旋转之美 https://blog.csdn.net/weixin_45590473/article/details/122884112


展示欧拉角与四元数动态变换关系的网站


https://quaternions.online/



罗德里格斯公式


https://en.wikipedia.org/wiki/Rodrigues’_rotation_formula



罗德里格斯公式(Rodrigues Formula) https://blog.csdn.net/weixin_40215443/article/details/123950141



二维xy坐标旋转 https://blog.csdn.net/qq_41102371/article/details/116245483#t4



推导

先放这,有空来推一遍



几种表达方式




K

K






K









k

k






k





的叉乘矩阵,即



K

=

k

\mathbf{K}=\mathbf{k}^{\land}






K




=









k

























,(



k

\mathbf{k}






k





的叉乘矩阵也可表示为



k

×

\mathbf{k}_{\times}







k











×






















)

1、





R

=

I

+

(

1

cos

θ

)

K

2

+

(

sin

θ

)

K

=

I

+

(

1

cos

θ

)

[

k

]

2

+

(

sin

θ

)

k

\begin{aligned} \mathbf{R}&=\mathbf{I}+(1-\cos\theta)\mathbf{K}^2+(\sin\theta)\mathbf{K}\\ &=\mathbf{I}+(1-\cos\theta)[\mathbf{k}^{\land}]^2+(\sin\theta)\mathbf{k}^{\land}\\ \end{aligned}
















R



































=




I




+




(


1









cos




θ


)



K










2











+




(


sin




θ


)


K












=




I




+




(


1









cos




θ


)


[



k























]










2











+




(


sin




θ


)



k












































2、





K

2

=

k

k

=

k

k

T

I

\mathbf{K}^2=\mathbf{k}^{\land}\mathbf{k}^{\land}=\mathbf{k}\mathbf{k}^T-\mathbf{I}







K










2











=









k























k
























=








k



k










T




















I






可得





R

=

I

+

(

1

cos

θ

)

(

k

k

T

I

)

+

(

sin

θ

)

k

=

cos

θ

I

+

(

1

cos

θ

)

k

k

T

+

(

sin

θ

)

k

\begin{aligned} \mathbf{R}&=\mathbf{I}+(1-\cos\theta)(\mathbf{k}\mathbf{k}^T-\mathbf{I})+(\sin\theta)\mathbf{k}^{\land}\\ &=\cos\theta\mathbf{I}+(1-\cos\theta)\mathbf{k}\mathbf{k}^T+(\sin\theta)\mathbf{k}^{\land} \end{aligned}
















R



































=




I




+




(


1









cos




θ


)


(


k



k










T
















I


)




+




(


sin




θ


)



k
































=




cos




θ


I




+




(


1









cos




θ


)


k



k










T











+




(


sin




θ


)



k












































3、

高博的14讲中推导了指数映射

在这里插入图片描述





R

=

e

x

p

(

θ

k

)

=

cos

θ

I

+

(

1

cos

θ

)

k

k

T

+

(

sin

θ

)

k

\mathbf{R}=exp(\theta \mathbf{k}^{\land})=\cos\theta\mathbf{I}+(1-\cos\theta)\mathbf{k}\mathbf{k}^T+(\sin\theta)\mathbf{k}^{\land}






R




=








e


x


p


(


θ



k






















)




=








cos




θ


I




+








(


1













cos




θ


)


k



k










T











+








(


sin




θ


)



k



























四元数转旋转矩阵

根据

http://mars.cs.umn.edu/tr/reports/Trawny05b.pdf

,四元数转旋转矩阵为:

在这里插入图片描述

在这里插入图片描述





G

L

C

(

q

ˉ

)

=

(

2

q

4

2

1

)

I

3

×

3

2

q

4

[

q

×

]

+

2

q

q

T

=

(

2

q

4

2

1

)

I

3

×

3

2

q

4

[

q

×

]

+

2

[

q

×

]

2

+

2

q

2

I

3

×

3

=

(

2

q

4

2

+

2

q

2

1

)

I

3

×

3

2

q

4

[

q

×

]

+

2

[

q

×

]

2

=

(

2

q

4

2

+

2

(

q

1

2

+

q

2

2

+

q

3

2

)

1

)

I

3

×

3

2

q

4

[

q

×

]

+

2

[

q

×

]

2

=

(

2

1

)

I

3

×

3

2

q

4

[

q

×

]

+

2

[

q

×

]

2

=

I

3

×

3

2

q

4

[

q

×

]

+

2

[

q

×

]

2

\begin{aligned} {}_G^L\mathbf{C}(\bar{q})&=(2q_4^2-1)\mathbf{I}_{3\times3}-2q_4[\mathbf{q}_{\times}]+2\mathbf{q}\mathbf{q}^T\\ &=(2q_4^2-1)\mathbf{I}_{3\times3}-2q_4[\mathbf{q}_{\times}]+2[\mathbf{q}_{\times}]^2+2|\mathbf{q}|^2\cdot \mathbf{I}_{3\times3}\\ &=(2q_4^2+2|\mathbf{q}|^2-1)\mathbf{I}_{3\times3}-2q_4[\mathbf{q}_{\times}]+2[\mathbf{q}_{\times}]^2\\ &=(2q_4^2+2(q_1^2+q_2^2+q_3^2)-1)\mathbf{I}_{3\times3}-2q_4[\mathbf{q}_{\times}]+2[\mathbf{q}_{\times}]^2\\ &=(2-1)\mathbf{I}_{3\times3}-2q_4[\mathbf{q}_{\times}]+2[\mathbf{q}_{\times}]^2\\ &=\mathbf{I}_{3\times3}-2q_4[\mathbf{q}_{\times}]+2[\mathbf{q}_{\times}]^2 \end{aligned}



























G








L


















C


(









q







ˉ

















)



























































=




(


2



q










4








2

























1


)



I











3


×


3


























2



q










4


















[



q











×



















]




+




2


q



q










T



















=




(


2



q










4








2

























1


)



I











3


×


3


























2



q










4


















[



q











×



















]




+




2


[



q











×




















]










2











+




2∣


q














2

















I











3


×


3





























=




(


2



q










4








2




















+




2∣


q














2
















1


)



I











3


×


3


























2



q










4


















[



q











×



















]




+




2


[



q











×




















]










2



















=




(


2



q










4








2




















+




2


(



q










1








2




















+





q










2








2




















+





q










3








2


















)









1


)



I











3


×


3


























2



q










4


















[



q











×



















]




+




2


[



q











×




















]










2



















=




(


2









1


)



I











3


×


3


























2



q










4


















[



q











×



















]




+




2


[



q











×




















]










2



















=





I











3


×


3


























2



q










4


















[



q











×



















]




+




2


[



q











×




















]










2































其中



q

ˉ

=

[

q

q

4

]

=

[

q

1

,

q

2

,

q

3

,

q

4

]

T

\bar{q}=\begin{bmatrix}\mathbf{q}\\q_4\end{bmatrix}=[q_1,q_2,q_3,q_4]^T













q







ˉ



















=










[













q









q










4




































]






=








[



q










1


















,





q










2


















,





q










3


















,





q










4



















]










T
















q

=

[

q

1

,

q

2

,

q

3

]

T

\mathbf{q}=[q_1,q_2,q_3]^T






q




=








[



q










1


















,





q










2


















,





q










3



















]










T
















q

1

2

+

q

2

2

+

q

3

2

+

q

4

2

=

1

q_1^2+q_2^2+q_3^2+q_4^2=1







q










1








2




















+









q










2








2




















+









q










3








2




















+









q










4








2




















=








1












G

L

 ⁣

R

=

[

1

2

q

2

2

2

q

3

2

2

(

q

1

q

2

+

q

3

q

4

)

2

(

q

1

q

3

q

2

q

4

)

2

(

q

1

q

2

q

3

q

4

)

1

2

q

1

2

2

q

3

2

2

(

q

2

q

3

+

q

1

q

4

)

2

(

q

1

q

3

+

q

2

q

4

)

2

(

q

2

q

3

q

1

q

4

)

1

2

q

1

2

2

q

2

2

]

{}_G^L\!R= \begin{bmatrix} 1-2q_2^2-2q_3^2& 2(q_1q_2+q_3q_4) & 2(q_1q_3-q_2q_4) \\ 2(q_1q_2-q_3q_4) & 1-2q_1^2-2q_3^2 & 2(q_2q_3+q_1q_4) \\ 2(q_1q_3+q_2q_4)& 2(q_2q_3-q_1q_4) & 1-2q_1^2-2q_2^2 \end{bmatrix}

















G








L




















R




=































































1









2



q










2








2

























2



q










3








2
























2


(



q










1



















q










2


























q










3



















q










4


















)








2


(



q










1



















q










3




















+





q










2



















q










4


















)





























2


(



q










1



















q










2




















+





q










3



















q










4


















)








1









2



q










1








2

























2



q










3








2
























2


(



q










2



















q










3


























q










1



















q










4


















)





























2


(



q










1



















q










3


























q










2



















q










4


















)








2


(



q










2



















q










3




















+





q










1



















q










4


















)








1









2



q










1








2

























2



q










2








2





















































































即将世界坐标系下的点



P

G

P^G







P










G












旋转到局部坐标系下的点



P

L

P^L







P










L

















P

L

=

G

L

 ⁣

R

P

G

P^L={}_G^L\!R P^G







P










L











=



















G








L




















R



P










G

















三维旋转:欧拉角、四元数、旋转矩阵、轴角之间的转换 https://zhuanlan.zhihu.com/p/45404840

中是将局部坐标系下的点



P

L

P^L







P










L












转换到世界坐标系下的



P

G

P^G







P










G


















L

G

 ⁣

R

=

[

1

2

q

2

2

2

q

3

2

2

(

q

1

q

2

q

3

q

4

)

2

(

q

1

q

3

+

q

2

q

4

)

2

(

q

1

q

2

+

q

3

q

4

)

1

2

q

1

2

2

q

3

2

2

(

q

2

q

3

q

1

q

4

)

2

(

q

1

q

3

q

2

q

4

)

2

(

q

2

q

3

+

q

1

q

4

)

1

2

q

1

2

2

q

2

2

]

{}_L^G\!R= \begin{bmatrix} 1-2q_2^2-2q_3^2& 2(q_1q_2-q_3q_4) & 2(q_1q_3+q_2q_4) \\ 2(q_1q_2+q_3q_4) & 1-2q_1^2-2q_3^2 & 2(q_2q_3-q_1q_4) \\ 2(q_1q_3-q_2q_4)& 2(q_2q_3+q_1q_4) & 1-2q_1^2-2q_2^2 \end{bmatrix}

















L








G




















R




=































































1









2



q










2








2

























2



q










3








2
























2


(



q










1



















q










2




















+





q










3



















q










4


















)








2


(



q










1



















q










3


























q










2



















q










4


















)





























2


(



q










1



















q










2


























q










3



















q










4


















)








1









2



q










1








2

























2



q










3








2
























2


(



q










2



















q










3




















+





q










1



















q










4


















)





























2


(



q










1



















q










3




















+





q










2



















q










4


















)








2


(



q










2



















q










3


























q










1



















q










4


















)








1









2



q










1








2

























2



q










2








2

























































































P

G

=

L

G

 ⁣

R

P

L

P^G={}_L^G\!R P^L







P










G











=



















L








G




















R



P










L














这正好满足:





G

L

 ⁣

R

=

L

G

 ⁣

R

T

(

G

L

 ⁣

R

=

L

G

 ⁣

R

1

)

{}_G^L\!R ={

{}_L^G\!R}^T({}_G^L\!R ={

{}_L^G\!R}^{-1})

















G








L




















R




=





















L








G




















R











T









(













G








L




















R




=





















L








G




















R















1










)







近似

根据

http://mars.cs.umn.edu/tr/reports/Trawny05b.pdf

原文当



δ

q

ˉ

\delta\bar{q}






δ









q







ˉ




















非常小时

在这里插入图片描述

以下为个人理解的推导





G

L

C

(

q

ˉ

)

=

(

2

q

4

2

1

)

I

3

×

3

2

q

4

[

q

×

]

+

2

q

q

T

(

2

×

1

2

1

)

I

3

×

3

2

×

1

[

1

2

δ

θ

×

]

+

2

×

0

3

×

3

=

I

3

×

3

[

δ

θ

×

]

\begin{aligned} {}_G^L\mathbf{C}(\bar{q})&=(2q_4^2-1)\mathbf{I}_{3\times3}-2q_4[\mathbf{q}_{\times}]+2qq^T\\ &\approx (2\times1^2-1)\mathbf{I}_{3\times3}-2\times 1[\frac{1}{2}\delta \mathbf{\theta}_{\times}]+2\times0_{3\times3}\\ &=\mathbf{I}_{3\times3}-[\delta \mathbf{\theta}_{\times}] \end{aligned}



























G








L


















C


(









q







ˉ

















)









































=




(


2



q










4








2

























1


)



I











3


×


3


























2



q










4


















[



q











×



















]




+




2


q



q










T
























(


2




×





1










2
















1


)



I











3


×


3


























2




×




1


[













2














1




















δ



θ











×



















]




+




2




×





0











3


×


3





























=





I











3


×


3


























[


δ



θ











×



















]
























其中



q

q

T

0

3

×

3

qq^T\approx0_{3\times3}






q



q










T





















0











3


×


3























四元数与轴角

还是参考

http://mars.cs.umn.edu/tr/reports/Trawny05b.pdf





q

ˉ

=

[

q

q

4

]

=

[

q

1

q

2

q

3

q

4

]

=

[

k

x

sin

(

θ

/

2

)

k

y

sin

(

θ

/

2

)

k

z

sin

(

θ

/

2

)

cos

(

θ

/

2

)

]

=

[

k

^

sin

(

θ

/

2

)

cos

(

θ

/

2

)

]

,

k

^

=

[

k

x

,

k

y

,

k

z

]

T

,

q

4

=

cos

(

θ

/

2

)

\bar{q}=\begin{bmatrix}\mathbf{q}\\q_4\end{bmatrix}=\begin{bmatrix}q_1\\q_2\\q_3\\q_4\end{bmatrix}=\begin{bmatrix}k_x\sin(\theta/2)\\k_y\sin(\theta/2)\\k_z\sin(\theta/2)\\\cos(\theta/2)\end{bmatrix}=\begin{bmatrix}\hat{\mathbf{k}}\sin(\theta/2)\\\cos(\theta/2)\end{bmatrix},\hat{\mathbf{k}}=[k_x,k_y,k_z]^T,q_4=\cos(\theta/2)













q







ˉ



















=










[













q









q










4




































]






=
































































q










1

























q










2

























q










3

























q










4


















































































=
































































k










x




















sin


(


θ


/2


)









k










y




















sin


(


θ


/2


)









k










z




















sin


(


θ


/2


)








cos


(


θ


/2


)


































































=










[




















k







^










sin


(


θ


/2


)








cos


(


θ


/2


)




















]






,











k







^










=








[



k










x


















,





k










y


















,





k










z



















]










T









,





q










4




















=








cos


(


θ


/2


)







转换代码



欧拉角转旋转矩阵

#include <Eigen/Core>
#include <Eigen/Dense>
#include <iostream>
#define PI 3.1415926

int main(int argc, char* argv[]){
    std::cout<<PI<<std::endl;
    if(argc<4){
        std::cout<<"please input a 3x1 vector,for example:\neuler2rt 45 30 60"<<std::endl;
        return 0;  
    }
    
    Eigen::Vector3d eulerAngle(atof(argv[1]),atof(argv[2]),atof(argv[3]));
    std::cout<<"eulerAngle:\nx: "<<eulerAngle[0]<<"    y: "<<eulerAngle[1]<<"    z: "<<eulerAngle[2]<<std::endl;
    eulerAngle=eulerAngle/180*PI;


    Eigen::Matrix3d rotation_matrix = Eigen::Matrix3d::Identity();
        Eigen::AngleAxisd rollAngle(Eigen::AngleAxisd(eulerAngle[0],Eigen::Vector3d::UnitX()));
    Eigen::AngleAxisd pitchAngle(Eigen::AngleAxisd(eulerAngle[1],Eigen::Vector3d::UnitY()));
    Eigen::AngleAxisd yawAngle(Eigen::AngleAxisd(eulerAngle[2],Eigen::Vector3d::UnitZ()));


    rotation_matrix=rollAngle*pitchAngle*yawAngle;

    std::cout<<"rotation_matrix:\n"<<rotation_matrix<<std::endl;
    Eigen::Vector3d eulerAngle2=rotation_matrix.eulerAngles(0,1,2);
     std::cout<<"eulerAngle:\nx: "<<eulerAngle2[0]/PI*180<<"    y: "<<eulerAngle2[1]/PI*180<<"    z: "<<eulerAngle2[2]/PI*180<<std::endl;

    return 0;
}

使用

erluer2rt 30 45 60



旋转矩阵转欧拉角和四元数

#include <Eigen/Core>
#include <Eigen/Dense>
#include <iostream>
#include <fstream>
#define PI 3.1415926

int main(int argc, char* argv[]){
    if(argc<2){
        std::cout<<"please input a file including a 3x3 matrix"<<std::endl;
        return 0;  
    }
    std::string filename;
    filename=argv[1];  
    std::ifstream fin;
    fin.open(filename,std::ios::in);
    if(!fin.is_open()){
        std::cout<<"read file "<<filename<<" failed."<<std::endl;
        return 0;
    }
    Eigen::Matrix3d rotation_matrix = Eigen::Matrix3d::Identity();

    for (std::size_t i = 0; i < 3; ++i) {
        for (std::size_t j = 0; j < 3; ++j) {
            double value;
            fin >> value;
            // std::cout<<value<<" ";
            rotation_matrix(i, j) = value;
        }
    }
    std::cout<<std::endl;
	fin.close();

    std::cout<<"rotation_matrix:\n"<<rotation_matrix<<std::endl;
    Eigen::Vector3d eulerAngle=rotation_matrix.eulerAngles(0,1,2);
    // std::cout<<eulerAngle<<std::endl;
    std::cout<<"eulerAngle:\nx: "<<eulerAngle[0]/PI*180<<"    y: "<<eulerAngle[1]/PI*180<<"    z: "<<eulerAngle[2]/PI*180<<std::endl;

	//转四元数
    Eigen::Quaterniond rotation_q(rotation_matrix);
    std::cout<<"rotation_q:\nx: "<<rotation_q.x()<<" y:"<<rotation_q.y()<<" z:"<<rotation_q.z()<<" w:"<<rotation_q.w()<<" "<<std::endl;


    return 0;
}

使用

rt2euler r_3x3.txt

其中r_3x3.txt格式如下

1 0 0
0 1 0
0 0 1



参考

使用Eigen实现四元数、欧拉角、旋转矩阵、旋转向量之间的转换


http://t.zoukankan.com/long5683-p-14373627.html




如有错漏,敬请指正

——————————————————————————————–202207



版权声明:本文为qq_41102371原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。