2020哈尔滨工业大学801控制原理

  • Post author:
  • Post category:其他


1.(来源1:1998清华大学自动控制原理第1题;来源2:自动控制原理学习辅导知识精粹习题详解考研真题——孙优贤、王慧 P30.例2-5、P57.B2-24)水平硬质杆上固定



M

1

M_1







M










1

























M

2

M_2







M










2

























M

3

M_3







M










3





















放置在水平桌面上,两个弹簧分别为



K

1

K_1







K










1

























K

2

K_2







K










2





















,忽略所有摩擦,当转动硬质杆的一端,转过一个小角度,求十家的力



f

f






f





(输入)与



M

2

M_2







M










2





















的位移



x

x






x





(输出)之间的传递函数。

在这里插入图片描述

杆的转动惯量





J

=

M

1

a

2

J=M_1a^2






J




=









M










1



















a










2














设杆的转角为



θ

\theta






θ





,对



M

2

M_2







M










2



























M

2

x

¨

=

k

2

(

a

θ

x

)

M_2\ddot{x}=k_2(a\theta-x)







M










2


























x







¨









=









k










2


















(


a


θ













x


)











M

1

M_1







M










1



























M

1

a

2

θ

¨

=

(

a

+

b

+

c

)

f

k

1

(

a

+

b

)

2

θ

M

2

a

x

¨

M_1a^2\ddot{\theta}=(a+b+c)f-k_1(a+b)^2\theta-M_2a\ddot{x}







M










1



















a










2

















θ







¨









=








(


a




+








b




+








c


)


f














k










1


















(


a




+








b



)










2









θ














M










2


















a










x







¨












因为



a

=

b

=

c

a=b=c






a




=








b




=








c










M

1

a

θ

¨

=

3

f

4

k

1

a

θ

M

2

x

¨

M_1a\ddot{\theta}=3f-4k_1a\theta-M_2\ddot{x}







M










1


















a










θ







¨









=








3


f













4



k










1


















a


θ














M










2


























x







¨












在零初始条件下对上式拉氏变换去除中间变量



θ

\theta






θ





可得到传递函数





X

(

s

)

F

(

s

)

=

k

2

M

1

M

2

s

4

+

(

k

2

M

1

+

k

2

M

2

+

4

k

1

M

2

)

s

2

+

4

k

1

k

2

\frac{X(s)}{F(s)}=\frac{k_2}{M_1M_2s^4+(k_2M_1+k_2M_2+4k_1M_2)s^2+4k_1k_2}

















F


(


s


)














X


(


s


)






















=




















M










1



















M










2



















s










4











+




(



k










2



















M










1




















+





k










2



















M










2




















+




4



k










1



















M










2


















)



s










2











+




4



k










1



















k










2































k










2







































2.(来源:自动控制原理学习辅导知识精粹习题详解考研真题——孙优贤、王慧 P77.例3-13)已知某负反馈系统的结构图如下图所示,其中



G

(

s

)

=

1

s

3

+

3.5

s

2

+

3.5

s

+

1

G(s)=\cfrac{1}{s^3+3.5s^2+3.5s+1}






G


(


s


)




=




















s










3











+




3


.


5



s










2











+




3


.


5


s




+




1














1























,反馈通道传递函数为



H

(

s

)

=

a

s

2

+

b

s

+

c

H(s)=as^2+bs+c






H


(


s


)




=








a



s










2











+








b


s




+








c





,要求闭环系统的性能指标



σ

p

=

4.3

%

\sigma_p=4.3\%







σ










p




















=








4


.


3


%









t

s

=

.

s

(

Δ

=

5

%

)

t_s=.s(\Delta=5\%)







t










s




















=








.


s


(


Δ




=








5


%


)





,确定参数



a

a






a









b

b






b









c

c






c







在这里插入图片描述

根据系统的动态性能指标,设闭环主导极点为



s

1

,

2

=

ζ

ω

n

±

j

1

ζ

2

s_{1,2}=-\zeta\omega_n\pm j\sqrt{1-\zeta^2}







s











1


,


2





















=











ζ



ω










n




















±








j










1










ζ










2


































,另一个极点为



s

3

=

d

s_3=-d







s










3




















=











d





,由题目要求





{

σ

p

=

e

π

ζ

1

ζ

2

×

100

%

=

4.3

%

T

s

=

3

ζ

ω

n

=

3

\left\{\begin{array}{l} \sigma_p=e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}\times100\%=4.3\% \\ T_s=\frac{3}{\zeta\omega_n}=3 \end{array}\right.








{

















σ










p




















=





e


































1






ζ









2












































π


ζ































×




1


0


0


%




=




4


.


3


%









T










s




















=
















ζ



ω










n
































3























=




3





























解得





{

ζ

=

0.707

ω

n

=

1.866

rad/s

\left\{\begin{array}{l} \zeta=0.707 \\ \omega_n=1.866\,\text{rad/s} \end{array}\right.








{
















ζ




=




0


.


7


0


7









ω










n




















=




1


.


8


6


6





rad/s






























则有





s

2

+

2

ζ

ω

n

+

ω

n

2

=

s

2

+

2

s

+

s

=

0

s^2+2\zeta\omega_n+\omega_n^2=s^2+2s+s=0







s










2











+








2


ζ



ω










n




















+









ω










n








2




















=









s










2











+








2


s




+








s




=








0







系统的特征方程为





Δ

(

s

)

=

(

s

2

+

2

s

+

s

)

(

s

+

d

)

=

s

3

+

(

d

+

2

)

s

2

+

(

2

d

+

2

)

s

+

2

d

\begin{aligned} \Delta(s)&=(s^2+2s+s)(s+d)\\ &=s^3+(d+2)s^2+(2d+2)s+2d \end{aligned}
















Δ


(


s


)



































=




(



s










2











+




2


s




+




s


)


(


s




+




d


)












=





s










3











+




(


d




+




2


)



s










2











+




(


2


d




+




2


)


s




+




2


d
























系统的闭环传递函数为





Φ

(

s

)

=

G

(

s

)

1

+

G

(

s

)

H

(

s

)

=

1

s

3

+

(

a

+

3.5

)

s

2

+

(

b

+

3.5

)

s

+

c

+

1

\begin{aligned} \Phi(s)&=\frac{G(s)}{1+G(s)H(s)} \\ &=\frac{1}{s^3+(a+3.5)s^2+(b+3.5)s+c+1} \end{aligned}
















Φ


(


s


)



































=















1




+




G


(


s


)


H


(


s


)














G


(


s


)






























=
















s










3











+




(


a




+




3


.


5


)



s










2











+




(


b




+




3


.


5


)


s




+




c




+




1














1










































对两特征方程可得





{

a

+

3.5

=

d

+

2

b

+

3.5

=

2

d

+

2

c

+

1

=

2

d

\left\{\begin{array}{l} a+3.5=d+2 \\ b+3.5=2d+2 \\ c+1=2d \end{array}\right.

































































a




+




3


.


5




=




d




+




2








b




+




3


.


5




=




2


d




+




2








c




+




1




=




2


d





























因为



s

3

=

d

s_3=-d







s










3




















=











d





为非主导极点,所以有



d

5

ζ

ω

n

=

5

d\geqslant5\zeta\omega_n=5






d













5


ζ



ω










n




















=








5





,若取



d

=

6

d=6






d




=








6





,可得





{

a

+

=

4.5

b

=

10.5

c

=

11

\left\{\begin{array}{l} a+=4.5 \\ b=10.5 \\ c=11 \end{array}\right.

































































a


+




=




4


.


5








b




=




1


0


.


5








c




=




1


1





























反馈通道传递函数为





H

(

s

)

=

4.5

s

2

+

10.5

s

+

11

H(s)=4.5s^2+10.5s+11






H


(


s


)




=








4


.


5



s










2











+








1


0


.


5


s




+








1


1





3.某系统的结构图如图:

在这里插入图片描述

(1)要使闭环系统渐近稳定,确定



K

0

K_0







K










0

























K

1

K_1







K










1





















的取值范围,并在



K

0

K

1

K_0—K_1







K










0






















K










1





















平面表示。

(2)在输入信号



r

(

t

)

=

0.5

t

2

r(t)=0.5t^2






r


(


t


)




=








0


.


5



t










2












的作用下,系统的稳态误差为



0

0






0





,求此时的



G

c

(

s

)

G_c(s)







G










c


















(


s


)







(1)系统的闭环传递函数为





C

(

s

)

R

(

s

)

=

[

1

+

2

s

+

G

c

(

s

)

]

K

0

s

(

s

+

1

)

1

+

K

0

s

(

s

+

1

)

(

K

1

s

+

1

+

2

s

)

=

K

0

[

s

G

c

(

s

)

+

s

+

2

]

s

3

+

(

1

+

K

0

K

1

)

s

2

+

K

0

s

+

2

K

0

\begin{aligned} \frac{C(s)}{R(s)} &= \left[1+\frac{2}{s}+G_c(s)\right]\cdot \frac{\cfrac{K_0}{s(s+1)}}{1+\cfrac{K_0}{s(s+1)}\cdot \left(K_1s+1+\cfrac{2}{s}\right)} \\ &= \frac{K_0[sG_c(s)+s+2]}{s^3+(1+K_0K_1)s^2+K_0s+2K_0} \end{aligned}



























R


(


s


)














C


(


s


)





















































=






[



1




+















s














2






















+





G










c


















(


s


)



]






















1




+















s


(


s




+




1


)















K










0













































(




K










1


















s




+




1




+















s














2





















)



























s


(


s




+




1


)















K










0
































































=
















s










3











+




(


1




+





K










0



















K










1


















)



s










2











+





K










0


















s




+




2



K










0































K










0


















[


s



G










c


















(


s


)




+




s




+




2


]










































闭环特征方程为





Δ

(

s

)

=

s

3

+

(

1

+

K

0

K

1

)

s

2

+

K

0

s

+

2

K

0

\Delta(s)=s^3+(1+K_0K_1)s^2+K_0s+2K_0






Δ


(


s


)




=









s










3











+








(


1




+









K










0



















K










1


















)



s










2











+









K










0


















s




+








2



K










0























劳斯表





s

3

1

K

0

s

2

1

+

K

0

K

1

2

K

0

s

1

K

0

(

1

+

K

0

K

1

2

)

1

+

K

0

K

1

s

0

2

K

0

\begin{matrix} s^3 & 1 & K_0 \\ s^2 & 1+K_0K_1 & 2K_0 \\ s^1 & \cfrac{K_0(1+K_0K_1-2)}{1+K_0K_1} & \\ s^0 & 2K_0 & & \\ \end{matrix}

















s










3
















s










2
















s










1
















s










0




































1








1




+





K










0



















K










1



































1




+





K










0



















K










1































K










0


















(


1




+





K










0



















K










1

























2


)


























2



K










0














































K










0
























2



K










0















































































要使闭环系统渐近稳定,劳斯表第一列大于零,则有





{

K

0

>

0

K

1

>

1

K

0

\left\{\begin{array}{l} K_0>0 \\ K_1>\cfrac{1}{K_0} \end{array}\right.


































































K










0




















>




0









K










1




















>
















K










0






























1


















































K

0

K

1

K_0—K_1







K










0






















K










1





















平面

在这里插入图片描述

(2)系统误差传递函数





Φ

e

(

s

)

=

1

G

c

(

s

)

K

0

s

(

s

+

1

)

1

+

K

0

K

1

s

+

1

1

+

(

1

+

2

s

)

K

0

s

(

s

+

1

)

1

+

K

0

K

1

s

+

1

=

s

3

+

(

1

+

K

0

K

1

)

s

2

K

0

s

G

c

(

s

)

s

3

+

(

1

+

K

0

K

1

)

s

2

+

K

0

s

+

2

K

0

\begin{aligned} \Phi_e(s) &= \frac{1-G_c(s)\cdot \cfrac{\cfrac{K_0}{s(s+1)}}{1+\cfrac{K_0K_1}{s+1}}}{1+\left(1+\cfrac{2}{s}\right)\cdot \cfrac{\cfrac{K_0}{s(s+1)}}{1+\cfrac{K_0K_1}{s+1}}} \\ &= \frac{s^3+(1+K_0K_1)s^2-K_0sG_c(s)}{s^3+(1+K_0K_1)s^2+K_0s+2K_0} \end{aligned}

















Φ










e


















(


s


)



































=















1




+






(



1




+















s














2





















)






















1




+















s




+




1















K










0



















K










1



























































s


(


s




+




1


)















K










0


































































1










G










c


















(


s


)




















1




+















s




+




1















K










0



















K










1



























































s


(


s




+




1


)















K










0


















































































=
















s










3











+




(


1




+





K










0



















K










1


















)



s










2











+





K










0


















s




+




2



K










0































s










3











+




(


1




+





K










0



















K










1


















)



s










2

















K










0


















s



G










c


















(


s


)










































在输入信号



r

(

t

)

=

1

2

t

2

r(t)=\cfrac{1}{2}\,t^2






r


(


t


)




=



















2














1























t










2












作用下,系统的稳态误差为



0

0






0





,即





lim

s

0

s

R

(

s

)

Φ

e

(

s

)

=

lim

s

0

s

1

s

3

Φ

e

(

s

)

=

lim

s

0

1

s

2

[

s

3

+

(

1

+

K

0

K

1

)

s

2

K

0

s

G

c

(

s

)

]

=

0

\begin{aligned} \lim\limits_{s\rightarrow0}s\cdot R(s)\Phi_e(s) &= \lim\limits_{s\rightarrow0}s\cdot\cfrac{1}{s^3}\cdot\Phi_e(s) \\ &=\lim\limits_{s\rightarrow0} \frac{1}{s^2}[s^3+(1+K_0K_1)s^2-K_0sG_c(s)] \\ &= 0 \end{aligned}

























s





0









lim



















s









R


(


s


)



Φ










e


















(


s


)









































=













s





0









lim



















s





















s










3





















1




























Φ










e


















(


s


)












=













s





0









lim































s










2





















1




















[



s










3











+




(


1




+





K










0



















K










1


















)



s










2

















K










0


















s



G










c


















(


s


)


]












=




0
























可得





G

c

(

s

)

=

(

1

K

0

+

K

1

)

s

G_c(s)=\left( \frac{1}{K_0}+K_1 \right)s







G










c


















(


s


)




=










(















K










0






























1






















+





K










1



















)






s





4.有一个三阶开环系统,没有闭环零点,在斜坡信号



r

(

t

)

=

t

r(t)=t






r


(


t


)




=








t





作用下的稳态误差为常数:

(1)由已知两个极点



s

=

2

s=-2






s




=











2









s

=

4

s=-4






s




=











4





,请确定其开环传递函数,并绘制根轨迹,求出汇合分离点,与虚轴交点等信息。

(2)若已知有一个极点是



5

-5









5





,请确定传递函数,并求出对应的稳态误差和超调量。

三阶系统,无闭环零点,且在斜坡信号下的稳态误差为常数,故系统为



I

\text{I}







I






型系统,设系统的开环传递函数为





G

(

s

)

=

K

s

(

s

+

a

)

(

s

+

b

)

G(s)=\frac{K}{s(s+a)(s+b)}






G


(


s


)




=



















s


(


s




+




a


)


(


s




+




b


)














K

























(1)已知两个极点为



s

=

2

s=-2






s




=











2









s

=

4

s=-4






s




=











4





,系统的传递函数为





G

(

s

)

=

K

s

(

s

+

2

)

(

s

+

4

)

G(s)=\frac{K}{s(s+2)(s+4)}






G


(


s


)




=



















s


(


s




+




2


)


(


s




+




4


)














K

























系统的根轨迹方程为





K

s

(

s

+

2

)

(

s

+

4

)

=

1

\frac{K}{s(s+2)(s+4)}=-1

















s


(


s




+




2


)


(


s




+




4


)














K






















=











1











n

=

3

n=3






n




=








3









m

=

0

m=0






m




=








0





,根轨迹有



3

3






3





条分支

②根轨迹的起点:



P

1

=

0

P_1=0







P










1




















=








0









P

2

=

2

P_2=-2







P










2




















=











2









P

3

=

4

P_3=-4







P










3




















=











4






③实轴上的根轨迹:



(

,

4

]

(-\infin,-4]






(








,







4


]









[

2

,

0

)

[-2,0)






[





2


,




0


)






④根轨迹的渐近线:





φ

=

(

2

k

+

1

)

π

3

0

  


  

k

=

0

,

φ

=

60

°

;

k

=

1

,

φ

=

300

°

σ

=

2

4

3

=

2

\varphi=\frac{(2k+1)\pi}{3-0} \implies k=0,\varphi=60°;k=1,\varphi=300° \\ \sigma=\frac{-2-4}{3}=-2






φ




=



















3









0














(


2


k




+




1


)


π



































k




=








0


,




φ




=








6


0


°


;




k




=








1


,




φ




=








3


0


0


°








σ




=



















3

















2









4






















=











2







⑤根轨迹的汇合点和分离点





W

(

s

)

=

s

3

+

6

s

2

+

s

=

0
  


  

d

W

(

s

)

ds

=

3

s

2

+

12

s

+

8

=

0

s

1

=

0.845

,

 

s

2

=

3.155

W(s)=s^3+6s^2+s=0 \implies \frac{\text{d}W(s)}{\text{ds}}=3s^2+12s+8=0 \\ s_1=-0.845(分离点),\ s_2=-3.155(舍去)






W


(


s


)




=









s










3











+








6



s










2











+








s




=








0





























ds
















d



W


(


s


)






















=








3



s










2











+








1


2


s




+








8




=








0









s










1




















=











0


.


8


4


5

















,







s










2




















=











3


.


1


5


5



















⑥根轨迹与虚轴交点





Δ

(

s

)

=

s

3

+

6

s

2

+

8

s

+

K

\Delta(s)=s^3+6s^2+8s+K






Δ


(


s


)




=









s










3











+








6



s










2











+








8


s




+








K











s

=

j

ω

s=j\omega






s




=








j


ω










Δ

(

j

ω

)

=

(

K

6

ω

2

)

+

j

(

8

ω

ω

3

)

\Delta(j\omega)=(K-6\omega^2)+j(8\omega-\omega^3)






Δ


(


j


ω


)




=








(


K













6



ω










2









)




+








j


(


8


ω














ω










3









)







令实部和虚部为零,可得





{

K

=

48

ω

=

2.828

\left\{\begin{array}{l} K=48 \\ \omega=2.828 \end{array}\right.








{
















K




=




4


8








ω




=




2


.


8


2


8





























根轨迹与虚轴交点为



s

1

,

2

=

±

j

2.828

s_{1,2}=\pm j2.828







s











1


,


2





















=








±


j


2


.


8


2


8







系统的根轨迹如图所示

在这里插入图片描述

(2)已知其中一个极点为



5

-5









5





,将其代入特征方程中





Δ

(

5

)

=

125

+

150

40

+

K

=

0

\Delta(5)=-125+150-40+K=0






Δ


(


5


)




=











1


2


5




+








1


5


0













4


0




+








K




=








0







解得





K

=

15

K=15






K




=








1


5







系统的传递函数为





G

(

s

)

=

15

s

(

s

+

2

)

(

s

+

4

)

=

1.875

s

(

0.5

s

+

1

)

(

025

s

+

1

)

\begin{aligned} G(s) &= \frac{15}{s(s+2)(s+4)} \\ &=\frac{1.875}{s(0.5s+1)(0 25s+1)} \end{aligned}
















G


(


s


)



































=















s


(


s




+




2


)


(


s




+




4


)














1


5






























=















s


(


0


.


5


s




+




1


)


(


0


2


5


s




+




1


)














1


.


8


7


5










































系统的稳态误差为





e

s

s

(

)

=

1

K

v

=

1.875

e_{ss}(\infin)=\frac{1}{K_v}=1.875







e











s


s



















(





)




=




















K










v






























1






















=








1


.


8


7


5











K

K






K





代入特征方程,可解得





s

1

=

5

,

 

s

2

,

3

=

0.5

±

j

1.658

s_1=-5,\ s_{2,3}=-0.5\pm j1.658







s










1




















=











5


,







s











2


,


3





















=











0


.


5




±








j


1


.


6


5


8










s

2

,

3

s_{2,3}







s











2


,


3






















为系统的主导极点,系统的超调量为





σ

p

=

e

π

ζ

1

ζ

2

×

100

%

=

e

0.5

π

1.658

×

100

%

=

38.775

%

\begin{aligned} \sigma_p &= e^{-\cfrac{\pi\zeta}{\sqrt{1-\zeta^2}}}\times100\% \\ &= e^{-\cfrac{0.5\pi}{1.658}}\times100\% \\ &= 38.775\% \end{aligned}

















σ










p

























































=





e

































1






ζ










2











































π


ζ






























×




1


0


0


%












=





e

























1


.


6


5


8














0


.


5


π






























×




1


0


0


%












=




3


8


.


7


7


5


%






















5.二阶线性最小相位单位负反馈系统的开环奈奎斯特图如下,根据图中信息确定闭环传递函数,并绘制开环渐近对数幅频特性图。

在这里插入图片描述

奈奎斯曲线初始角为



90

°

-90°









9


0


°





,该系统为



I

\text{I}







I






型系统,终止角为



180

°

-180°









1


8


0


°





,设系统开环传递函数为





G

(

s

)

=

K

s

(

T

s

+

1

)

G(s)=\frac{K}{s(Ts+1)}






G


(


s


)




=



















s


(


T


s




+




1


)














K

























系统的频率特性为





G

(

j

ω

)

=

K

T

1

+

T

2

ω

2

j

K

ω

+

T

2

ω

3

G(j\omega)=-\frac{KT}{1+T^2\omega^2}-j\frac{K}{\omega+T^2\omega^3}






G


(


j


ω


)




=






















1




+





T










2










ω










2





















K


T































j













ω




+





T










2










ω










3





















K

























由图可知,当



ω

=

0

+

\omega=0^+






ω




=









0










+












时,



K

T

=

2

-KT=-2









K


T




=











2





;当



ω

=

2

\omega=2






ω




=








2





时,



K

T

1

+

4

T

2

=

1

-\cfrac{KT}{1+4T^2}=-1




















1




+




4



T










2





















K


T






















=











1





,联立两式可解得





{

K

=

4

T

=

0.5

\left\{\begin{array}{l} K=4 \\ T=0.5 \end{array}\right.








{
















K




=




4








T




=




0


.


5





























系统的闭环传递函数为





Φ

(

s

)

=

G

(

s

)

1

+

G

(

s

)

=

4

0.5

s

2

+

s

+

4

\begin{aligned} \Phi(s) &= \frac{G(s)}{1+G(s)} \\ &= \frac{4}{0.5s^2+s+4} \end{aligned}
















Φ


(


s


)



































=















1




+




G


(


s


)














G


(


s


)






























=















0


.


5



s










2











+




s




+




4














4










































根据系统的开环传递函数,开环渐近对数幅频特性曲线初始斜率为



20

dB/dec

-20\,\text{dB/dec}









2


0





dB/dec






,转折频率为



ω

=

2

rad/s

\omega=2\,\text{rad/s}






ω




=








2





rad/s






,由




L

(

1

)

=

20

lg

K

L(1)=20\lg K






L


(


1


)




=








2


0




l

g





K





可知,低频段的延长线过点



(

1

,

12

)

(1,12)






(


1


,




1


2


)





;由



20

lg

4

ω

c

0.5

ω

c

20\lg\cfrac{4}{\omega_c\cdot 0.5\omega_c}






2


0




l

g

















ω










c

























0


.


5



ω










c






























4























,可知系统的截至频率



ω

c

=

2

2

rad/s

\omega_c=2\sqrt{2}\text{rad/s}







ω










c




















=








2










2

























rad/s






,图略。

6.某单位负反馈系统的开环传递函数为



G

(

s

)

=

2

s

(

s

+

1

)

(

0.0.2

s

+

1

)

G(s)=\cfrac{2}{s(s+1)(0.0.2s+1)}






G


(


s


)




=



















s


(


s




+




1


)


(


0


.


0


.


2


s




+




1


)














2























,试设计串联校正装置,满足下列要求:

(1)要求斜坡输入信号下的稳态误差为



e

s

s

(

)

=

0.01

e_{ss}(\infin)=0.01







e











s


s



















(





)




=








0


.


0


1







(2)



0.6

ω

c

1

rad/s

0.6 \leqslant \omega_c \leqslant 1 \text{rad/s}






0


.


6














ω










c





























1



rad/s








(3)



γ

40

°

\gamma\geqslant40°






γ













4


0


°







确定校正装置



G

c

(

s

)

G_c(s)







G










c


















(


s


)










I

\text{I}







I






系统,斜坡输入信号下稳态误差为





e

s

s

(

)

=

1

K

v

=

0.5

e_{ss}(\infin)=\frac{1}{K_v}=0.5







e











s


s



















(





)




=




















K










v






























1






















=








0


.


5







根据题目要求斜坡输入信号下的稳态误差为



e

s

s

(

)

=

0.01

e_{ss}(\infin)=0.01







e











s


s



















(





)




=








0


.


0


1





,设校正装置增益为



K

c

=

50

K_c=50







K










c




















=








5


0





,此时系统的开环传递函数为





G

1

(

s

)

=

100

s

(

s

+

1

)

(

0.02

s

+

1

)

G_1(s)=\frac{100}{s(s+1)(0.02s+1)}







G










1


















(


s


)




=



















s


(


s




+




1


)


(


0


.


0


2


s




+




1


)














1


0


0

























截止频率





100

ω

c

1

ω

c

1

2

+

1

0.0004

ω

c

1

2

+

1

=

1

\frac{100}{\omega_{c1}\sqrt{\omega_{c1}^2+1}\sqrt{0.0004\omega_{c1}^2+1}}=1


















ω











c


1




























ω











c


1









2




















+




1
































0


.


0


0


0


4



ω











c


1









2




















+




1




































1


0


0






















=








1







解得





ω

c

1

=

9.88

rad/s

\omega_{c1}=9.88\,\text{rad/s}







ω











c


1





















=








9


.


8


8





rad/s








相角裕度





γ

1

=

180

°

90

°

arctan

ω

c

1

arctan

0.02

ω

c

1

=

5.4

°

\gamma_1=180°-90°-\arctan\omega_{c1}-\arctan0.02\omega_{c1}=-5.4°







γ










1




















=








1


8


0


°













9


0


°













arctan





ω











c


1






























arctan




0


.


0


2



ω











c


1





















=











5


.


4


°







故可使用滞后校正,设控制器为





G

c

(

s

)

=

50

(

τ

s

+

1

)

β

τ

s

+

1

G_c(s)=\frac{50(\tau s+1)}{\beta\tau s+1}







G










c


















(


s


)




=



















β


τ


s




+




1














5


0


(


τ


s




+




1


)





























G

1

(

j

ω

)

\angle G_1(j\omega)










G










1


















(


j


ω


)





选取相角





G

1

(

j

ω

)

=

180

°

+

γ

c

+

10

°

=

130

°

\angle G_1(j\omega)=-180°+\gamma_c+10°=-130°










G










1


















(


j


ω


)




=











1


8


0


°




+









γ










c




















+








1


0


°




=











1


3


0


°







对应的角频率为





ω

c

=

0.812

rad/s

\omega_c=0.812\,\text{rad/s}







ω










c




















=








0


.


8


1


2





rad/s












20

lg

G

1

(

j

ω

c

)

=

20

lg

β

20\lg|G_1(j\omega_c)|=20\lg\beta






2


0




l

g









G










1


















(


j



ω










c


















)







=








2


0




l

g





β





可得





β

=

95.59

\beta=95.59






β




=








9


5


.


5


9











1

τ

=

1

10

ω

c

\cfrac{1}{\tau}=\cfrac{1}{10}\,\omega_c

















τ














1






















=



















1


0














1























ω










c





















可得





τ

=

12.32

   

β

τ

=

1177.22

\tau=12.32\ \ \ \beta\tau=1177.22






τ




=








1


2


.


3


2








β


τ




=








1


1


7


7


.


2


2







故校正装置为





G

c

(

s

)

=

50

(

12.32

s

+

1

)

1177.22

s

+

1

G_c(s)=\frac{50(12.32s+1)}{1177.22s+1}







G










c


















(


s


)




=



















1


1


7


7


.


2


2


s




+




1














5


0


(


1


2


.


3


2


s




+




1


)

























校正后系统的传递函数为





G

c

(

s

)

G

(

s

)

=

100

(

12.32

s

+

1

)

s

(

s

+

1

)

(

0.02

s

+

1

)

(

1177.22

s

+

1

)

G_c(s)G(s)=\frac{100(12.32s+1)}{s(s+1)(0.02s+1)(1177.22s+1)}







G










c


















(


s


)


G


(


s


)




=



















s


(


s




+




1


)


(


0


.


0


2


s




+




1


)


(


1


1


7


7


.


2


2


s




+




1


)














1


0


0


(


1


2


.


3


2


s




+




1


)























7.某非线性系统结构如图所示,非线性环节描述为



N

(

A

)

=

16

π

A

1

(

1

A

)

2

N(A)=\cfrac{16}{\pi A}\sqrt{1-(\cfrac{1}{A})^2}






N


(


A


)




=



















π


A














1


6




























1









(













A














1





















)










2


































,分析是否会产生自激振荡,若产生,求振荡角频率及振幅,若不产生,说明理由。

在这里插入图片描述

方框图化简

在这里插入图片描述

在这里插入图片描述

系统线性部分传递函数为





G

(

s

)

=

2

s

(

s

2

+

2

s

+

2

)

G(s)=\frac{2}{s(s^2+2s+2)}






G


(


s


)




=



















s


(



s










2











+




2


s




+




2


)














2

























线性部分频率特性





G

(

j

ω

)

=

2

j

ω

(

ω

2

+

2

j

ω

+

2

)

=

4

(

2

ω

2

)

2

+

4

ω

2

j

2

(

2

ω

2

)

2

ω

[

(

2

ω

2

)

2

+

4

ω

2

]

\begin{aligned} G(j\omega) &= \frac{2}{j\omega(-\omega^2+2j\omega+2)} \\ &= -\frac{4}{(2-\omega^2)^2+4\omega^2}-j\frac{2(2-\omega^2)^2}{\omega[(2-\omega^2)^2+4\omega^2]} \end{aligned}
















G


(


j


ω


)



































=















j


ω


(






ω










2











+




2


j


ω




+




2


)














2






























=


















(


2










ω










2










)










2











+




4



ω










2





















4



























j













ω


[


(


2










ω










2










)










2











+




4



ω










2









]














2


(


2










ω










2










)










2





















































ω

=

0

+

\omega=0^+






ω




=









0










+












时,



G

(

j

0

+

)

=

1

j

G(j0^+)=-1-j\infin






G


(


j



0










+









)




=











1













j












G

(

j

0

+

)

=

90

°

\angle G(j0^+)=-90°









G


(


j



0










+









)




=











9


0


°





;当



ω

\omega\rightarrow\infin






ω



















时,



G

(

j

)

0

G(j\infin)\rightarrow0






G


(


j





)













0









G

(

j

)

=

270

°

\angle G(j\infin)=-270°









G


(


j





)




=











2


7


0


°





;令



G

(

j

ω

)

G(j\omega)






G


(


j


ω


)





的虚部为零,可得



ω

=

2

\omega=\sqrt{2}






ω




=
















2



























,代入



G

(

j

ω

)

G(j\omega)






G


(


j


ω


)





的实部,得到奈奎斯曲线与实轴的交点为



0.5

-0.5









0


.


5







非线性部分,负倒描述函数为





1

N

(

A

)

=

π

A

16

1

(

1

A

)

2

-\frac{1}{N(A)}=-\frac{\pi A}{16\sqrt{1-\left(\cfrac{1}{A}\right)^2}}




















N


(


A


)














1






















=






















1


6










1












(














A














1





















)












2











































π


A





























A

+

A\rightarrow+\infin






A













+








时,



1

N

(

+

)

-\cfrac{1}{N(+\infin)}\rightarrow -\infin




















N


(


+





)














1








































;当



A

=

2

A=\sqrt{2}






A




=
















2



























时,负倒描述函数取最大值



1

N

(

2

)

0.392

-\cfrac{1}{N(\sqrt{2})}\approx-0.392




















N


(










2
























)














1


































0


.


3


9


2









G

(

j

ω

)

G(j\omega)






G


(


j


ω


)









1

N

(

A

)

-\cfrac{1}{N(A)}




















N


(


A


)














1























图像为

在这里插入图片描述




G

(

j

ω

)

G(j\omega)






G


(


j


ω


)





曲线与



1

N

(

A

)

-\cfrac{1}{N(A)}




















N


(


A


)














1























曲线有两个交点,则





1

N

(

A

)

=

0.5

-\frac{1}{N(A)}=-0.5




















N


(


A


)














1






















=











0


.


5







解得





{

A

1

=

2.29

ω

=

2

rad/s

  

{

A

2

=

1.11

ω

=

2

rad/s

\left\{\begin{array}{l} A_1=2.29 \\ \omega=\sqrt{2}\,\text{rad/s} \end{array}\right.\ \ \left\{\begin{array}{l} A_2=1.11 \\ \omega=\sqrt{2}\,\text{rad/s} \end{array}\right.








{

















A










1




















=




2


.


2


9








ω




=












2



























rad/s

































{

















A










2




















=




1


.


1


1








ω




=












2



























rad/s






























奈奎斯曲线包围的区域为不稳定区域,



1

N

(

A

)

-\cfrac{1}{N(A)}




















N


(


A


)














1























曲线沿着



A

A






A





增大的方向,由不稳定区域进入稳定区域的交点为



A

1

A_1







A










1

























A

2

A_2







A










2





















不是,因此系统产生自激振荡,振荡频率为



ω

=

2

rad/s

\omega=\sqrt{2}\,\text{rad/s}






ω




=
















2



























rad/s






,振幅为



A

1

=

2.29

A_1=2.29







A










1




















=








2


.


2


9





8.某离散系统的结构图如下图所示,其中



G

d

(

z

)

=

(

z

+

0.92

)

(

z

+

3

)

z

(

z

1

)

(

z

+

0.5

)

G_d(z)=\cfrac{(z+0.92)(z+3)}{z(z-1)(z+0.5)}







G










d


















(


z


)




=



















z


(


z









1


)


(


z




+




0


.


5


)














(


z




+




0


.


9


2


)


(


z




+




3


)























,采样周期为



1

1






1





秒,针对单位阶跃输入信号,设计一个最少拍数字控制器



D

(

z

)

D(z)






D


(


z


)





,并判断所设计系统采样点之间是否有振荡。

在这里插入图片描述

将系统的开环脉冲传递函数化为





G

d

(

z

)

=

z

1

(

1

+

0.92

z

1

)

(

1

+

3

z

1

)

(

1

z

1

)

(

1

+

0.5

z

1

)

G_d(z)=\frac{z^{-1}(1+0.92z^{-1})(1+3z^{-1})}{(1-z^{-1})(1+0.5z^{-1})}







G










d


















(


z


)




=



















(


1










z














1










)


(


1




+




0


.


5



z














1










)















z














1










(


1




+




0


.


9


2



z














1










)


(


1




+




3



z














1










)




























G

d

(

z

)

G_d(z)







G










d


















(


z


)





中包含



z

1

z^{-1}







z














1













零点以及单位圆外的



z

=

3

z=-3






z




=











3





零点,最小拍数字控制器



D

(

z

)

D(z)






D


(


z


)





也应含有



z

1

z^{-1}







z














1













零点以及单位圆外的



z

=

3

z=-3






z




=











3





零点,设



Φ

(

z

)

\Phi(z)






Φ


(


z


)





的形式为





Φ

(

z

)

=

a

z

1

(

1

+

3

z

1

)

\Phi(z)=az^{-1}(1+3z^{-1})






Φ


(


z


)




=








a



z














1










(


1




+








3



z














1










)











Φ

e

(

z

)

\Phi_e(z)







Φ










e


















(


z


)





的形式为





Φ

e

(

z

)

=

(

1

z

1

)

(

1

+

b

z

1

)

\Phi_e(z)=(1-z^{-1})(1+bz^{-1})







Φ










e


















(


z


)




=








(


1














z














1










)


(


1




+








b



z














1










)











Φ

e

(

z

)

=

1

Φ

(

z

)

\Phi_e(z)=1-\Phi(z)







Φ










e


















(


z


)




=








1













Φ


(


z


)





解得





{

a

=

0.25

b

=

0.75

\left\{\begin{array}{l} a=0.25 \\ b=0.75 \end{array}\right.








{
















a




=




0


.


2


5








b




=




0


.


7


5





























最小拍数字控制器的脉冲传递函数为





D

(

z

)

=

Φ

(

z

)

G

d

(

z

)

Φ

e

(

z

)

=

0.25

(

1

+

0.5

z

1

)

(

1

+

0.92

z

1

)

(

1

+

0.75

z

1

)

\begin{aligned} D(z)&=\frac{\Phi(z)}{G_d(z)\Phi_e(z)} \\ &=\frac{0.25(1+0.5z^{-1})}{(1+0.92z^{-1})(1+0.75z^{-1})} \end{aligned}
















D


(


z


)



































=
















G










d


















(


z


)



Φ










e


















(


z


)














Φ


(


z


)






























=















(


1




+




0


.


9


2



z














1










)


(


1




+




0


.


7


5



z














1










)














0


.


2


5


(


1




+




0


.


5



z














1










)










































系统的误差输出为





E

(

z

)

=

Φ

(

z

)

R

(

z

)

=

(

1

z

1

)

(

1

+

3

z

1

)

1

1

z

1

=

1

+

0.75

z

1

\begin{aligned} E(z)&=\Phi(z)R(z) \\ &=(1-z^{-1})(1+3z^{-1})\cdot \frac{1}{1-z^{-1}} \\ &= 1+0.75z^{-1} \end{aligned}
















E


(


z


)









































=




Φ


(


z


)


R


(


z


)












=




(


1










z














1










)


(


1




+




3



z














1










)




















1










z














1






















1






























=




1




+




0


.


7


5



z














1
































数字控制器输出为





E

1

(

z

)

=

E

(

z

)

D

(

z

)

=

(

1

+

0.75

z

1

)

0.25

(

1

+

0.5

z

1

)

(

1

+

0.92

z

1

)

(

1

+

0.75

z

1

)

=

0.25

0.105

z

1

+

0.0966

z

2

0.089

z

3

+

\begin{aligned} E_1(z)&=E(z)D(z) \\ &=(1+0.75z^{-1})\cdot \frac{0.25(1+0.5z^{-1})}{(1+0.92z^{-1})(1+0.75z^{-1})} \\ &= 0.25-0.105z^{-1}+0.0966z^{-2}-0.089z^{-3}+\cdots \end{aligned}

















E










1


















(


z


)









































=




E


(


z


)


D


(


z


)












=




(


1




+




0


.


7


5



z














1










)




















(


1




+




0


.


9


2



z














1










)


(


1




+




0


.


7


5



z














1










)














0


.


2


5


(


1




+




0


.


5



z














1










)






























=




0


.


2


5









0


.


1


0


5



z














1












+




0


.


0


9


6


6



z














2

















0


.


0


8


9



z














3












+





























由上式可知,最少拍系统经过一拍后,两个采样点之间的稳态误差并不为零,出现正负值交替的振荡。

9.某系统的状态空间方程:





[

x

˙

1

x

˙

2

x

˙

3

]

=

[

0

1

0

2

0

1

0

3

2

]

x

+

[

0

0

2

]

u

\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix}= \begin{bmatrix} 0 & 1 & 0 \\ 2 & 0 & 1 \\ 0 & 3 & 2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} u































































x







˙















1

































x







˙















2

































x







˙















3











































































=
























































0








2








0





























1








0








3





























0








1








2



























































x




+
























































0








0








2



























































u







(1)若



y

=

x

1

+

2

x

2

+

3

x

3

y=x_1+2x_2+3x_3






y




=









x










1




















+








2



x










2




















+








3



x










3





















(试写出另一种实现,使得其输入输出的物理意义均不变),且输出是第一个状态变量。

(2)若



y

=

x

1

y=x_1






y




=









x










1





















,(同括号)且输出为



3

3






3





个状态变量之和。

(1)系统的能观测矩阵为





Q

o

=

[

C

C

A

C

A

2

]

=

[

1

2

3

4

10

8

20

28

20

]

Q_o= \begin{bmatrix} C \\ CA \\ CA^2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 10 & 8 \\ 20 & 28 & 20 \end{bmatrix}







Q










o




















=
























































C








C


A








C



A










2


































































=
























































1








4








2


0





























2








1


0








2


8





























3








8








2


0

































































rank

Q

o

=

3

\text{rank}\, Q_o=3







rank






Q










o




















=








3





,系统完全能观,系统的能观标准型为





A

o

=

Q

o

A

Q

o

1

=

[

0

1

0

0

0

1

4

5

2

]

B

o

=

Q

o

B

=

[

6

16

52

]

C

o

=

C

Q

o

1

=

[

1

0

0

]

A_o=Q_oAQ_o^{-1}= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & 5 & 2 \end{bmatrix} \\ B_o=Q_oB= \begin{bmatrix} 6 \\ 16 \\ 52 \end{bmatrix} \\ C_o=CQ_o^{-1}= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}







A










o




















=









Q










o


















A



Q










o












1





















=
























































0








0











4





























1








0








5





























0








1








2


































































B










o




















=









Q










o


















B




=
























































6








1


6








5


2


































































C










o




















=








C



Q










o












1





















=










[













1





























0





























0




















]









系统的状态空间方程为





{

x

˙

=

[

0

1

0

0

0

1

4

5

2

]

x

+

[

6

16

52

]

u

y

=

[

1

0

0

]

x

\left\{\begin{array}{l} \dot x= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & 5 & 2 \end{bmatrix} x + \begin{bmatrix} 6 \\ 16 \\ 52 \end{bmatrix} u \\ y= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x \end{array}\right.












































































































x






˙









=




















































0








0











4





























1








0








5





























0








1








2



























































x




+




















































6








1


6








5


2



























































u








y




=






[













1





























0





























0




















]






x





























(2)设



P

P






P





为变换矩阵,矩阵



C

C






C





经过变换后为





C

1

=

C

P

=

[

1

1

1

]

C_1=CP=\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}







C










1




















=








C


P




=










[













1





























1





























1




















]









则变换矩阵可取





P

=

[

1

1

1

0

1

1

0

0

1

]

P= \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}






P




=
























































1








0








0





























1








1








0





























1








1








1






























































经过可逆线性变换后





A

o

=

P

1

A

P

=

[

2

4

5

2

2

3

0

3

2

]

B

o

=

Q

o

B

=

[

2

0

2

]

A_o=P^{-1}AP= \begin{bmatrix} -2 & -4 & -5 \\ 2 & 2 & 3 \\ 0 & 3 & 2 \end{bmatrix} \\ B_o=Q_oB= \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix} \\







A










o




















=









P














1










A


P




=



























































2








2








0
































4








2








3
































5








3








2


































































B










o




















=









Q










o


















B




=



























































2








0








2
































































系统的状态空间方程为





{

x

˙

=

[

2

4

5

2

2

3

0

3

2

]

x

+

[

2

0

2

]

u

y

=

[

1

1

1

]

x

\left\{\begin{array}{l} \dot x= \begin{bmatrix} -2 & -4 & -5 \\ 2 & 2 & 3 \\ 0 & 3 & 2 \end{bmatrix} x + \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix} u \\ y= \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} x \end{array}\right.












































































































x






˙









=























































2








2








0
































4








2








3
































5








3








2



























































x




+























































2








0








2



























































u








y




=






[













1





























1





























1




















]






x



























10.某系统的状态空间方程为:





{

x

˙

=

[

0

1

0

2

1

3

0

2

0

]

x

+

[

0

0

2

]

u

y

=

[

0

0

1

]

x

\left\{\begin{array}{l} \dot x= \begin{bmatrix} 0 & 1 & 0 \\ 2 & 1 & 3 \\ 0 & 2 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} u \\ y= \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} x \end{array}\right.












































































































x






˙









=




















































0








2








0





























1








1








2





























0








3








0



























































x




+




















































0








0








2



























































u








y




=






[













0





























0





























1




















]






x





























设计一个降维观测器,使得观测极点为



2

-2









2









5

-5









5





,写出降维观测器方程及状态估计的表达式。

系统的能观测矩阵为





Q

o

=

[

C

C

A

C

A

2

]

=

[

0

0

1

0

2

0

4

2

6

]

Q_o= \begin{bmatrix} C \\ CA \\ CA^2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 4 & 2 & 6 \end{bmatrix}







Q










o




















=
























































C








C


A








C



A










2


































































=
























































0








0








4





























0








2








2





























1








0








6

































































rank

Q

o

=

3

\text{rank}\, Q_o=3







rank






Q










o




















=








3





,系统完全能观,



rank

C

=

1

\text{rank}C=1







rank



C




=








1





,可以设计



n

m

=

2

n-m=2






n













m




=








2





维观测器,选取





R

=

[

1

0

1

0

1

0

]

R= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}






R




=










[













1








0





























0








1





























1








0




















]









取线性变换矩阵





P

=

[

C

R

]

=

[

0

0

1

1

0

1

0

1

0

]

P= \begin{bmatrix} C \\ R \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}






P




=










[













C








R




















]






=
























































0








1








0





























0








0








1





























1








1








0






























































可得





Q

=

P

1

=

[

1

1

0

0

0

1

1

0

0

]

  

Q

1

=

[

1

0

1

]

  

Q

2

=

[

1

0

0

1

0

0

]

Q=P^{-1}= \begin{bmatrix} -1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \ \ Q_1= \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \ \ Q_2= \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}






Q




=









P














1












=



























































1








0








1





























1








0








0





























0








1








0
































































Q










1




















=



























































1








0








1
































































Q










2




















=
























































1








0








0





























0








1








0






























































计算



A

ˉ

\bar{A}














A







ˉ














B

ˉ

\bar{B}














B







ˉ















A

ˉ

=

P

A

P

1

=

[

0

0

2

0

0

3

1

2

1

]

  

B

ˉ

=

P

B

=

[

2

2

0

]

A

ˉ

22

=

[

0

3

2

1

]

  

A

ˉ

12

=

[

0

2

]

  

B

ˉ

1

=

[

2

]

  

B

ˉ

2

=

[

2

0

]

\bar{A}=PAP^{-1}= \left[ \begin{array}{c:cc} 0 & 0 & 2 \\ \hdashline 0 & 0 & 3 \\ 1 & 2 & 1 \end{array} \right] \ \ \bar{B}=PB= \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} \\ \bar{A}_{22}= \begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix} \ \ \bar{A}_{12}= \begin{bmatrix} 0 & 2 \\ \end{bmatrix} \ \ \bar{B}_{1}= \begin{bmatrix} 2 \end{bmatrix} \ \ \bar{B}_{2}= \begin{bmatrix} 2 \\ 0 \end{bmatrix}














A







ˉ









=








P


A



P














1












=
































































0








0








1































0








0








2





























2








3








1




























































































B







ˉ









=








P


B




=
























































2








2








0










































































A







ˉ
















2


2





















=










[













0








2





























3








1




















]



















A







ˉ
















1


2





















=










[













0





























2




















]



















B







ˉ
















1





















=










[













2




















]



















B







ˉ
















2





















=










[













2








0




















]









根据题目期望的观测极点,得到期望特征方程





Δ

1

(

s

)

=

s

2

+

7

s

+

10

\Delta_1(s)=s^2+7s+10







Δ










1


















(


s


)




=









s










2











+








7


s




+








1


0







设降维观测器矩阵为



L

=

[

l

1

l

2

]

L=\begin{bmatrix} l_1 \\ l_2 \end{bmatrix}






L




=










[














l










1

























l










2




































]







,则





Δ

(

s

)

=

det

[

s

I

(

A

ˉ

22

+

L

A

ˉ

12

)

]

=

s

2

(

1

+

2

l

2

)

s

2

(

3

2

l

1

)

\begin{aligned} \Delta(s)&=\det[sI-(\bar{A}_{22}+L\bar{A}_{12})] \\ &=s^2-(1+2l_2)s-2(3-2l_1) \\ \end{aligned}
















Δ


(


s


)



































=




det


[


s


I









(











A







ˉ
















2


2





















+




L











A







ˉ
















1


2



















)


]












=





s










2
















(


1




+




2



l










2


















)


s









2


(


3









2



l










1


















)
























比较两式可得





{

l

1

=

4

l

2

=

4

\left\{\begin{array}{l} l_1=4 \\ l_2=-4 \end{array}\right.








{

















l










1




















=




4









l










2




















=







4





























降维观测器为





z

˙

=

[

0

11

2

7

]

+

[

44

35

]

y

+

[

10

8

]

u

x

^

=

Q

x

ˉ

˙

=

Q

2

z

+

(

Q

1

Q

2

L

)

y

=

[

1

0

0

1

0

0

]

z

+

[

5

4

1

]

y

\dot{z}= \begin{bmatrix} 0 & 11 \\ 2 & -7 \end{bmatrix} + \begin{bmatrix} 44 \\ -35 \end{bmatrix} y + \begin{bmatrix} 10 \\ -8 \end{bmatrix} u \\ \hat{x}= Q\dot{\bar{x}}=Q_2z+(Q_1-Q_2L)y= \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} z + \begin{bmatrix} -5 \\ 4 \\ 1 \end{bmatrix} y














z







˙









=










[













0








2





























1


1











7




















]






+










[













4


4











3


5




















]






y




+










[













1


0











8




















]






u
















x







^









=








Q


















x







ˉ












˙









=









Q










2


















z




+








(



Q










1






























Q










2


















L


)


y




=
























































1








0








0





























0








1








0



























































z




+



























































5








4








1



























































y







版权声明:本文为qq_41062383原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。