C++ 版
#include <ros/ros.h>
#include <moveit/move_group_interface/move_group_interface.h>
#include <moveit/robot_trajectory/robot_trajectory.h>
int main(int argc, char **argv)
{
ros::init(argc, argv, "magician_moveit_cartesian_demo");
ros::AsyncSpinner spinner(1);
spinner.start();
moveit::planning_interface::MoveGroupInterface arm("magician_arm");
//获取终端link的名称
std::string end_effector_link = arm.getEndEffectorLink();
//设置目标位置所使用的参考坐标系
std::string reference_frame = "magician_origin";
arm.setPoseReferenceFrame(reference_frame);
//当运动规划失败后,允许重新规划
arm.allowReplanning(true);
//设置位置(单位:米)和姿态(单位:弧度)的允许误差
arm.setGoalPositionTolerance(0.001);
arm.setGoalOrientationTolerance(0.01);
//设置允许的最大速度和加速度
arm.setMaxAccelerationScalingFactor(0.2);
arm.setMaxVelocityScalingFactor(0.2);
// 控制机械臂先回到初始化位置
arm.setNamedTarget("home");
arm.move();
sleep(1);
// 获取当前位姿数据最为机械臂运动的起始位姿
geometry_msgs::Pose start_pose = arm.getCurrentPose(end_effector_link).pose;
std::vector<geometry_msgs::Pose> waypoints;
//将初始位姿加入路点列表
waypoints.push_back(start_pose);
start_pose.position.z -= 0.093;
waypoints.push_back(start_pose);
start_pose.position.x += 0.04;
waypoints.push_back(start_pose);
start_pose.position.y += 0.04;
waypoints.push_back(start_pose);
start_pose.position.x -= 0.04;
start_pose.position.y -= 0.04;
waypoints.push_back(start_pose);
// 笛卡尔空间下的路径规划
moveit_msgs::RobotTrajectory trajectory;
const double jump_threshold = 0.0;
const double eef_step = 0.005;
double fraction = 0.0;
int maxtries = 100; //最大尝试规划次数
int attempts = 0; //已经尝试规划次数
while(fraction < 1.0 && attempts < maxtries)
{
fraction = arm.computeCartesianPath(waypoints, eef_step, jump_threshold, trajectory);
attempts++;
if(attempts % 10 == 0)
ROS_INFO("Still trying after %d attempts...", attempts);
}
if(fraction == 1)
{
ROS_INFO("Path computed successfully. Moving the arm.");
// 生成机械臂的运动规划数据
moveit::planning_interface::MoveGroupInterface::Plan plan;
plan.trajectory_ = trajectory;
// 执行运动
arm.execute(plan);
sleep(1);
}
else
{
ROS_INFO("Path planning failed with only %0.6f success after %d attempts.", fraction, maxtries);
}
// 控制机械臂先回到初始化位置
arm.setNamedTarget("home");
arm.move();
sleep(1);
ros::shutdown();
return 0;
}
#include <ros/ros.h>
#include <moveit/move_group_interface/move_group_interface.h>
#include <moveit/robot_trajectory/robot_trajectory.h>
int main(int argc, char **argv)
{
ros::init(argc, argv, "magician_moveit_cartesian_demo");
ros::AsyncSpinner spinner(1);
spinner.start();
moveit::planning_interface::MoveGroupInterface arm("magician_arm");
//获取终端link的名称
std::string end_effector_link = arm.getEndEffectorLink();
//设置目标位置所使用的参考坐标系
std::string reference_frame = "magician_origin";
arm.setPoseReferenceFrame(reference_frame);
//当运动规划失败后,允许重新规划
arm.allowReplanning(true);
//设置位置(单位:米)和姿态(单位:弧度)的允许误差
arm.setGoalPositionTolerance(0.001);
arm.setGoalOrientationTolerance(0.01);
//设置允许的最大速度和加速度
arm.setMaxAccelerationScalingFactor(0.2);
arm.setMaxVelocityScalingFactor(0.2);
// 控制机械臂先回到初始化位置
arm.setNamedTarget("home");
arm.move();
sleep(1);
// 获取当前位姿数据最为机械臂运动的起始位姿
geometry_msgs::Pose start_pose = arm.getCurrentPose(end_effector_link).pose;
std::vector<geometry_msgs::Pose> waypoints;
//将初始位姿加入路点列表
waypoints.push_back(start_pose);
geometry_msgs::Pose pose1;
geometry_msgs::Pose pose2;
pose1.position.x = 0.1659;
pose1.position.y = 0.0000;
pose1.position.z = -0.027;
pose1.orientation.x = 0.0;
pose1.orientation.y = 0.0;
pose1.orientation.z = 0.0;
pose1.orientation.w = 1.0;
waypoints.push_back(pose1);
pose2.position.x = 0.200;
pose2.position.y = 0.048;
pose2.position.z = -0.027;
pose2.orientation.x = 0.0;
pose2.orientation.y = 0.0;
pose2.orientation.z = 0.0;
pose2.orientation.w = 1.0;
waypoints.push_back(pose2);
// 笛卡尔空间下的路径规划
moveit_msgs::RobotTrajectory trajectory;
const double jump_threshold = 0.0;
const double eef_step = 0.0002;
double fraction = 0.0;
int maxtries = 100; //最大尝试规划次数
int attempts = 0; //已经尝试规划次数
while(fraction < 1.0 && attempts < maxtries)
{
fraction = arm.computeCartesianPath(waypoints, eef_step, jump_threshold, trajectory);
attempts++;
if(attempts % 10 == 0)
ROS_INFO("Still trying after %d attempts...", attempts);
}
if(fraction == 1)
{
ROS_INFO("Path computed successfully. Moving the arm.");
// 生成机械臂的运动规划数据
moveit::planning_interface::MoveGroupInterface::Plan plan;
plan.trajectory_ = trajectory;
// 执行运动
arm.execute(plan);
sleep(1);
}
else
{
ROS_INFO("Path planning failed with only %0.6f success after %d attempts.", fraction, maxtries);
}
// 控制机械臂先回到初始化位置
arm.setNamedTarget("home");
arm.move();
sleep(1);
ros::shutdown();
return 0;
}
Python版
$ rosrun probot_demo moveit_cartesian_demo.py _cartesian:=False 走自由路径
$ rosrun probot_demo moveit_cartesian_demo.py _cartesian:=True 走直线
代码:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import rospy, sys
import moveit_commander
from moveit_commander import MoveGroupCommander
from geometry_msgs.msg import Pose
from copy import deepcopy
class MoveItCartesianDemo:
def __init__(self):
# 初始化move_group的API
moveit_commander.roscpp_initialize(sys.argv)
# 初始化ROS节点
rospy.init_node('magician_moveit_cartesian_demo', anonymous=True)
# 是否需要使用笛卡尔空间的运动规划
cartesian = rospy.get_param('~cartesian', True)
# 初始化需要使用move group控制的机械臂中的arm group
arm = MoveGroupCommander('magician_arm')
# 当运动规划失败后,允许重新规划
arm.allow_replanning(True)
# 设置目标位置所使用的参考坐标系
arm.set_pose_reference_frame('magician_origin')
# 设置位置(单位:米)和姿态(单位:弧度)的允许误差
arm.set_goal_position_tolerance(0.001)
arm.set_goal_orientation_tolerance(0.001)
# 设置允许的最大速度和加速度
arm.set_max_acceleration_scaling_factor(0.5)
arm.set_max_velocity_scaling_factor(0.5)
# 获取终端link的名称
end_effector_link = arm.get_end_effector_link()
# 控制机械臂先回到初始化位置
arm.set_named_target('home')
arm.go()
rospy.sleep(1)
# 获取当前位姿数据最为机械臂运动的起始位姿
start_pose = arm.get_current_pose(end_effector_link).pose
# 初始化路点列表
waypoints = []
# 将初始位姿加入路点列表
if cartesian:
waypoints.append(start_pose)
# 设置路点数据,并加入路点列表
wpose = deepcopy(start_pose)
wpose.position.z -= 0.093
if cartesian:
waypoints.append(deepcopy(wpose))
else:
arm.set_pose_target(wpose)
arm.go()
rospy.sleep(1)
wpose.position.x += 0.04
if cartesian:
waypoints.append(deepcopy(wpose))
else:
arm.set_pose_target(wpose)
arm.go()
rospy.sleep(1)
wpose.position.y += 0.04
if cartesian:
waypoints.append(deepcopy(wpose))
else:
arm.set_pose_target(wpose)
arm.go()
rospy.sleep(1)
wpose.position.x -= 0.04
wpose.position.y -= 0.04
if cartesian:
waypoints.append(deepcopy(wpose))
else:
arm.set_pose_target(wpose)
arm.go()
rospy.sleep(1)
if cartesian:
fraction = 0.0 #路径规划覆盖率
maxtries = 100 #最大尝试规划次数
attempts = 0 #已经尝试规划次数
# 设置机器臂当前的状态作为运动初始状态
arm.set_start_state_to_current_state()
# 尝试规划一条笛卡尔空间下的路径,依次通过所有路点
while fraction < 1.0 and attempts < maxtries:
(plan, fraction) = arm.compute_cartesian_path (
waypoints, # waypoint poses,路点列表
0.005, # eef_step,终端步进值
0.0, # jump_threshold,跳跃阈值
True) # avoid_collisions,避障规划
# 尝试次数累加
attempts += 1
# 打印运动规划进程
if attempts % 10 == 0:
rospy.loginfo("Still trying after " + str(attempts) + " attempts...")
# 如果路径规划成功(覆盖率100%),则开始控制机械臂运动
if fraction == 1.0:
rospy.loginfo("Path computed successfully. Moving the arm.")
arm.execute(plan)
rospy.loginfo("Path execution complete.")
# 如果路径规划失败,则打印失败信息
else:
rospy.loginfo("Path planning failed with only " + str(fraction) + " success after " + str(maxtries) + " attempts.")
rospy.sleep(1)
# 控制机械臂先回到初始化位置
arm.set_named_target('home')
arm.go()
rospy.sleep(1)
# 关闭并退出moveit
moveit_commander.roscpp_shutdown()
moveit_commander.os._exit(0)
if __name__ == "__main__":
try:
MoveItCartesianDemo()
except rospy.ROSInterruptException:
pass
版权声明:本文为qq_42145185原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。