文章目录
1、sklearn中常用的分类算法
2. 使用sklearn估计器构建SVM模型
sklearn中常用的分类算法
模块名: 函数名
linear_model LogisticRegression
svm SVC
neighbors KNeighborsClassifier
naive_bayes GaussianNB
tree Decision TreeClasssifier
ensemble RandomForestClassifier
ensemble GradientBoostingClassifier
使用sklearn估计器构建SVM模型
#导入各个模块
import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.svm import SVC
from sklearn.model_selection importt train_test_split
from sklearn.preprocessing import StandardScaler
#cancer数据集特征
cancer = load_breast_cancer()
cancer_data = cancer["data"]
cancer_target = cancer["target"]
cancer_name = cancer["feature_names"]
cancer_data_train, cancer_data_test, cancer_target_train, cancer_target_test = train_test_split(cancer_data, cancer_target, test_size=0.2,random_state=22)
#数据标准化
stdScaler = StandardScaler().fit(cancer_data_train)
cancer_trainStd = stdScaler.transform(cancer_data_train)
cancer_testStd = stdScaler.transform(cancer_data_test)
#建立SVM模型
svm = SVC().fit(cancer_trainStd, cancer_target_train)
print ("建立的SVM模型为:”,svm)
#预测训练集结果
cancer_target_pred = svm.predict(cancer_testStd)
print ("预测前20个结果为:“,cancer_target_pred[:20])
预测结果和真实结果做对比,求出准确率,代码如下:
## 求出预测和真实一样的数目
true = np.sum(cancer_target_pred == cancer_target_test )
print('预测对的结果数目为:', true)
print('预测错的的结果数目为:', cancer_target_test.shape[0]-true)
print('预测结果准确率为:', true/cancer_target_test.shape[0])
单单准确率并不能很好的反映模型的性能,为了有效的判断一个预测模型的效能表现,需要结合真实值计算出
精确率,召回率,F1值,Cohen’s Kappa系数
等指标。详情见下:
from sklearn.metrics import accuracy_score,precision_score, \
recall_score,f1_score,cohen_kappa_score
print('使用SVM预测breast_cancer数据的准确率为:',
accuracy_score(cancer_target_test,cancer_target_pred))
print('使用SVM预测breast_cancer数据的精确率为:',
precision_score(cancer_target_test,cancer_target_pred))
print('使用SVM预测breast_cancer数据的召回率为:',
recall_score(cancer_target_test,cancer_target_pred))
print('使用SVM预测breast_cancer数据的F1值为:',
f1_score(cancer_target_test,cancer_target_pred))
print('使用SVM预测breast_cancer数据的Cohen’s Kappa系数为:',
cohen_kappa_score(cancer_target_test,cancer_target_pred))
另外,sklearn的metrics模块除了提供precision等单一评价指标的函数外,还提供了一个能输出分类模型评价报告的函数classification_report,代码如下:
from sklearn.metrics import classification_report
print ("使用svm预测数据的分类报告为:", classification_report(cancer_target_test, cancer_target_pred))
除此之外,还可以用ROC曲线的方式来评价分类模型,代码如下:
from sklearn.metrics import roc_curve
import matplotlib.pyplot as plt
## 求出ROC曲线的x轴和y轴
fpr, tpr, thresholds = roc_curve(cancer_target_test,cancer_target_pred)
plt.figure(figsize=(10,6))
plt.xlim(0,1) ##设定x轴的范围
plt.ylim(0.0,1.1) ## 设定y轴的范围
plt.xlabel('False Postive Rate')
plt.ylabel('True Postive Rate')
plt.plot(fpr,tpr,linewidth=2, linestyle="-",color='red')
plt.show()
版权声明:本文为niuxuerui11原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。