矩阵秩的不等式证明

  • Post author:
  • Post category:其他




矩阵秩的不等式及其证明




  1. (

    A

    B

    )

    T

    =

    B

    T

    A

    T

    (A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}}






    (


    A


    B



    )












    T













    =









    B












    T












    A












    T














证明

:设



A

=

(

a

i

j

)

m

×

s

,

B

=

(

b

i

j

)

s

×

n

A=\left(a_{i j}\right)_{m \times s}, B=\left(b_{i j}\right)_{s \times n}






A




=










(



a











i


j



















)












m


×


s





















,




B




=










(



b











i


j



















)












s


×


n






















,记



A

B

=

C

=

(

c

i

j

)

m

×

n

,

B

T

A

T

=

D

=

(

d

i

j

)

n

×

m

A B=C=\left(c_{i j}\right)_{m \times n}, B^{T} A^{T}=D=\left(d_{i j}\right)_{n \times m}






A


B




=








C




=










(



c











i


j



















)












m


×


n





















,





B











T











A











T












=








D




=










(



d











i


j



















)












n


×


m






















,于是根据矩阵乘法公式,有





c

j

i

=

k

=

1

s

a

j

k

b

k

i

c_{j i}=\sum_{k=1}^{s} a_{j k} b_{k i}







c











j


i





















=

















k


=


1



















s





















a











j


k




















b











k


i




























B

T

\boldsymbol{B}^{\mathbf{T}}









B














T














的第



i

i






i





行为



(

b

1

i

,


,

b

s

i

)

,

A

T

\left(b_{1 i}, \cdots, b_{s i}\right), \boldsymbol{A}^{\mathrm{T}}







(



b











1


i



















,











,





b











s


i



















)





,







A














T














的第



j

j






j





列为



(

a

j

1

,


,

a

j

s

)

T

\left(a_{j 1}, \cdots, a_{j s}\right)^{T}








(



a











j


1



















,











,





a











j


s



















)












T













,因此





d

i

j

=

k

=

1

s

b

k

i

a

j

k

=

k

=

1

s

a

j

k

b

k

i

d_{i j}=\sum_{k=1}^{s} b_{k i} a_{j k}=\sum_{k=1}^{s} a_{j k} b_{k i}







d











i


j





















=

















k


=


1



















s





















b











k


i




















a











j


k





















=

















k


=


1



















s





















a











j


k




















b











k


i
























所以





d

i

j

=

c

j

i

(

i

=

1

,

2

,


,

n

;

j

=

1

,

2

,


,

m

)

d_{i j}=c_{j i} \quad(i=1,2, \cdots, n ; j=1,2, \cdots, m)







d











i


j





















=









c











j


i





















(


i




=








1


,




2


,











,




n


;




j




=








1


,




2


,











,




m


)











D

=

C

T

D=C^{\mathrm{T}}






D




=









C












T
















  1. 0

    r

    (

    A

    )

    min

    {

    m

    ,

    n

    }

    0 \leqslant r(A) \leqslant \min \{m, n\}






    0













    r


    (


    A


    )













    min


    {



    m


    ,




    n


    }




这个由定义就很容易理解,不再证明




  1. r

    (

    A

    B

    )

    min

    {

    r

    (

    A

    )

    ,

    r

    (

    B

    )

    }

    r(A B) \leqslant \min \{r(\boldsymbol{A}), r(\boldsymbol{B})\}






    r


    (


    A


    B


    )













    min


    {



    r


    (




    A




    )


    ,




    r


    (




    B




    )


    }





分析

:对于向量组



α

1

,

α

2

,


,

α

s

\alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}







α











1



















,





α











2



















,











,





α











s


























β

1

,

β

2

,


,

β

t

\beta_{1}, \beta_{2}, \cdots, \beta_{t}







β











1



















,





β











2



















,











,





β











t






















,若任一



β

i

(

i

=

1

,

2

,


,

t

)

\boldsymbol{\beta}_{i}(i=1,2, \cdots, t)









β













i



















(


i




=








1


,




2


,











,




t


)





均可由



α

1

,

α

2

,


,

α

s

\alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}







α











1



















,





α











2



















,











,





α











s






















线性表出,则



r

(

β

1

,

β

2

,


,

β

t

)

r

(

α

1

,

α

2

,


,

α

s

)

r\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{t}\right) \leqslant r\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{s}\right)






r





(





β













1



















,







β













2



















,











,







β













t



















)














r





(





α













1



















,







α













2



















,











,







α













s



















)






,这是本题证明的关键依据

**证明:**不妨设



A

m

×

n

,

B

n

×

s

A_{m \times n}, B_{n \times s}







A











m


×


n



















,





B











n


×


s






















,将



B

,

A

B

B, A B






B


,




A


B





按行分块为



B

=

[

β

1

β

2

β

n

]

,

A

B

=

C

=

[

γ

1

γ

2

γ

m

]

B=\left[\begin{array}{c}\beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n}\end{array}\right], A B=C=\left[\begin{array}{c}\gamma_{1} \\ \gamma_{2} \\ \vdots \\ \gamma_{m}\end{array}\right]






B




=






















































































β











1


























β











2







































β











n









































































































,




A


B




=








C




=






















































































γ











1


























γ











2







































γ











m










































































































,于是





A

B

=

[

a

11

a

12

a

1

n

a

21

a

22

a

2

n

a

m

1

a

m

2

a

n

n

]

[

β

1

β

2

β

n

]

=

[

a

11

β

1

+

a

12

β

2

+

+

a

1

n

β

n

a

21

β

1

+

a

22

β

2

+

+

a

2

n

β

n

a

m

1

β

1

+

a

m

2

β

2

+

+

a

m

β

n

]

=

[

γ

1

γ

2

γ

m

]

A B=\left[\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{n n} \end{array}\right]\left[\begin{array}{c} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n} \end{array}\right]=\left[\begin{array}{c} a_{11} \beta_{1}+a_{12} \beta_{2}+\cdots+a_{1 n} \beta_{n} \\ a_{21} \beta_{1}+a_{22} \beta_{2}+\cdots+a_{2 n} \beta_{n} \\ \vdots \\ a_{m 1} \beta_{1}+a_{m 2} \beta_{2}+\cdots+a_{m} \beta_{n} \end{array}\right]=\left[\begin{array}{c} \gamma_{1} \\ \gamma_{2} \\ \vdots \\ \gamma_{m} \end{array}\right]






A


B




=






















































































a











1


1


























a











2


1







































a











m


1















































a











1


2


























a











2


2







































a











m


2





































































































a











1


n


























a











2


n







































a











n


n























































































































































































β











1


























β











2







































β











n









































































































=






















































































a











1


1




















β











1





















+





a











1


2




















β











2





















+









+





a











1


n




















β











n


























a











2


1




















β











1





















+





a











2


2




















β











2





















+









+





a











2


n




















β











n







































a











m


1




















β











1





















+





a











m


2




















β











2





















+









+





a











m




















β











n









































































































=






















































































γ











1


























γ











2







































γ











m










































































































所以



A

B

AB






A


B





的行向量



γ

i

(

i

=

1

,

2

,


,

m

)

\gamma_{i}(i=1,2, \cdots, m)







γ











i



















(


i




=








1


,




2


,











,




m


)





均可由



B

B






B





的行向量线性表出,故





r

(

A

B

)

r

(

B

)

r(A B) \leqslant r(B)






r


(


A


B


)













r


(


B


)





同理可证



r

(

A

B

)

r

(

A

)

r(A B) \leqslant r(A)






r


(


A


B


)













r


(


A


)





,故有



r

(

A

B

)

min

{

r

(

A

)

,

r

(

B

)

}

r(A B) \leqslant \min \{r(A), r(B)\}






r


(


A


B


)













min


{



r


(


A


)


,




r


(


B


)


}







  1. r

    (

    A

    +

    B

    )

    r

    (

    A

    )

    +

    r

    (

    B

    )

    r(A+B) \leqslant r(A)+r(B)






    r


    (


    A




    +








    B


    )













    r


    (


    A


    )




    +








    r


    (


    B


    )





证明

:设



r

(

A

)

=

p

,

r

(

B

)

=

q

r(A)=p, r(\boldsymbol{B})=q






r


(


A


)




=








p


,




r


(




B




)




=








q





,将



A

,

B

A,B






A


,




B





按列分块为





A

=

[

α

1

,

α

2

,


,

α

s

]

,

B

=

[

β

1

,

β

2

,


,

β

s

]

A=\left[\alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}\right], B=\left[\beta_{1}, \beta_{2}, \cdots, \beta_{s}\right]






A




=









[



α











1



















,





α











2



















,











,





α











s



















]





,




B




=









[



β











1



















,





β











2



















,











,





β











s



















]






于是





[

A

,

B

]

=

[

α

1

,

α

2

,


,

α

s

,

β

1

,

β

2

,


,

β

s

]

A

+

B

=

[

α

1

+

β

1

,

α

2

+

β

2

,


,

α

s

+

β

s

]

\begin{array}{c} {[A, B]=\left[\alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}, \beta_{1}, \beta_{2}, \cdots, \beta_{s}\right]} \\ A+B=\left[\alpha_{1}+\beta_{1}, \alpha_{2}+\beta_{2}, \cdots, \alpha_{s}+\beta_{s}\right] \end{array}



















[


A


,




B


]




=





[



α











1



















,





α











2



















,











,





α











s



















,





β











1



















,





β











2



















,











,





β











s



















]










A




+




B




=





[



α











1





















+





β











1



















,





α











2





















+





β











2



















,











,





α











s





















+





β











s



















]





























α

i

+

β

i

(

i

=

1

,

2

,


,

s

)

\boldsymbol{\alpha}_{i}+\boldsymbol{\beta}_{i}(i=1,2, \cdots, s)









α













i





















+











β













i



















(


i




=








1


,




2


,











,




s


)





均可由向量组



α

1

,

α

2

,


,

α

s

,

β

1

,

β

2

,


,

β

s

\alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}, \beta_{1}, \beta_{2}, \cdots, \beta_{s}







α











1



















,





α











2



















,











,





α











s



















,





β











1



















,





β











2



















,











,





β











s






















线性表出,故





r

(

A

+

B

)

r

(

[

A

,

B

]

)

r(A+B) \leqslant r([A, B])






r


(


A




+








B


)













r


(


[


A


,




B


]


)





又设



A

,

B

A,B






A


,




B





的列向量的极大线性无关组分别为



α

1

,

α

2

,


,

α

p

\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}







α











1



















,





α











2



















,











,





α











p


























β

1

,

β

2

,


,

β

q

\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{q}









β













1



















,







β













2



















,











,







β













q






















。将



A

A






A





的极大线性无关组



α

1

,

α

2

,


,

α

p

\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}







α











1



















,





α











2



















,











,





α











p






















扩充成



[

A

,

B

]

[A,B]






[


A


,




B


]





的极大线性无关组,设为



α

1

,

α

2

,


,

α

p

,

β

1

,

β

2

,


,

β

w

\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}, \beta_{1}, \beta_{2}, \cdots, \beta_{w}







α











1



















,





α











2



















,











,





α











p



















,





β











1



















,





β











2



















,











,





β











w






















,显然



w

q

w \leqslant q






w













q





,故有





r

(

[

A

,

B

]

)

=

p

+

w

p

+

q

=

r

(

A

)

+

r

(

B

)

r([A, B])=p+w \leqslant p+q=r(A)+r(B)






r


(


[


A


,




B


]


)




=








p




+








w













p




+








q




=








r


(


A


)




+








r


(


B


)









r

(

A

+

B

)

r

(

[

A

,

B

]

)

r

(

A

)

+

r

(

B

)

r(A+B) \leqslant r([A, B]) \leqslant r(A)+r(B)






r


(


A




+








B


)













r


(


[


A


,




B


]


)













r


(


A


)




+








r


(


B


)







  1. r

    (

    [

    A

    O

    O

    B

    ]

    )

    =

    r

    (

    A

    )

    +

    r

    (

    B

    )

    r\left(\left[\begin{array}{ll}A & O \\ O & B\end{array}\right]\right)=r(A)+r(B)






    r






    (





    [















    A








    O





























    O








    B






















    ]





    )






    =








    r


    (


    A


    )




    +








    r


    (


    B


    )







  2. r

    (

    A

    )

    +

    r

    (

    B

    )

    r

    (

    [

    A

    O

    C

    B

    ]

    )

    r

    (

    A

    )

    +

    r

    (

    B

    )

    +

    r

    (

    C

    )

    r(\boldsymbol{A})+r(\boldsymbol{B}) \leqslant r\left(\left[\begin{array}{cc}\boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{C} & \boldsymbol{B}\end{array}\right]\right) \leqslant r(\boldsymbol{A})+r(\boldsymbol{B})+r(\boldsymbol{C})






    r


    (




    A




    )




    +








    r


    (




    B




    )













    r






    (





    [

















    A












    C

































    O












    B
























    ]





    )















    r


    (




    A




    )




    +








    r


    (




    B




    )




    +








    r


    (




    C




    )





证明:





r

(

A

)

+

r

(

B

)

=

r

(

[

A

,

O

]

)

+

r

(

[

O

,

B

]

)

=

r

(

[

A

O

O

B

]

)

r

(

[

A

O

C

B

]

)

r

(

[

A

,

O

]

)

+

r

(

[

C

,

B

]

)

r

(

A

)

+

r

(

B

)

+

r

(

C

)

\begin{aligned} r(A)+r(B) &=r([A, O])+r([O, B]) \\ &=r\left(\left[\begin{array}{cc} A & O \\ O & B \end{array}\right]\right) \leqslant r\left(\left[\begin{array}{cc} A & O \\ C & B \end{array}\right]\right) \\ & \leqslant r([A, O])+r([C, B]) \\ & \leqslant r(A)+r(B)+r(C) \end{aligned}
















r


(


A


)




+




r


(


B


)















































=




r


(


[


A


,




O


]


)




+




r


(


[


O


,




B


]


)












=




r






(





[















A








O





























O








B






















]





)











r






(





[















A








C





























O








B






















]





)



















r


(


[


A


,




O


]


)




+




r


(


[


C


,




B


]


)

















r


(


A


)




+




r


(


B


)




+




r


(


C


)






















(因



r

(

B

)

r

(

[

C

,

B

]

)

r

(

B

)

+

r

(

C

)

r(\boldsymbol{B}) \leqslant r([\boldsymbol{C}, \boldsymbol{B}]) \leqslant r(\boldsymbol{B})+r(\boldsymbol{C})






r


(




B




)













r


(


[




C




,






B




]


)













r


(




B




)




+








r


(




C




)






注解

:第五题也为本题的一个特例




  1. r

    (

    A

    B

    )

    r

    (

    A

    )

    +

    r

    (

    B

    )

    n

    r(A B) \geqslant r(A)+r(B)-n






    r


    (


    A


    B


    )













    r


    (


    A


    )




    +








    r


    (


    B


    )













    n





    (当



    A

    B

    =

    O

    A B=O






    A


    B




    =








    O





    时,



    r

    (

    A

    )

    +

    r

    (

    B

    )

    n

    r(A)+r(B) \leqslant n






    r


    (


    A


    )




    +








    r


    (


    B


    )













    n









    n

    n






    n









    A

    A






    A





    的列数或



    B

    B






    B





    的行数)


证明:

:对



[

A

O

E

n

B

]

\left[\begin{array}{ll}\mathbf{A} & \boldsymbol{O} \\ \boldsymbol{E}_{n} & \boldsymbol{B}\end{array}\right]








[
















A












E













n
















































O












B
























]







做初等变换,得:





[

A

O

E

n

B

]

[

O

A

B

E

n

B

]

[

O

A

B

E

n

O

]

[

E

n

O

O

A

B

]

\left[\begin{array}{cc} A & O \\ E_{n} & B \end{array}\right] \rightarrow\left[\begin{array}{cc} O & -A B \\ E_{n} & B \end{array}\right] \rightarrow\left[\begin{array}{cc} O & -A B \\ E_{n} & O \end{array}\right] \rightarrow\left[\begin{array}{cc} E_{n} & O \\ O & A B \end{array}\right]








[















A









E











n














































O








B






















]

















[















O









E











n

















































A


B








B






















]

















[















O









E











n

















































A


B








O






















]

















[
















E











n

























O





























O








A


B






















]







又显然



r

(

A

)

+

r

(

B

)

=

r

(

[

A

O

O

B

]

)

r

(

[

A

O

E

n

B

]

)

r(A)+r(B)=r\left(\left[\begin{array}{ll}A & O \\ O & B\end{array}\right]\right) \leqslant r\left(\left[\begin{array}{ll}A & O \\ E_{n} & B\end{array}\right]\right)






r


(


A


)




+








r


(


B


)




=








r






(





[















A








O





























O








B






















]





)















r






(





[















A









E











n














































O








B






















]





)







,则





r

(

A

)

+

r

(

B

)

r

(

[

E

n

O

O

A

B

]

)

=

r

(

E

n

)

+

r

(

A

B

)

=

n

+

r

(

A

B

)

r(\boldsymbol{A})+r(\boldsymbol{B}) \leqslant r\left(\left[\begin{array}{cc} \boldsymbol{E}_{n} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{A} \boldsymbol{B} \end{array}\right]\right)=r\left(\boldsymbol{E}_{n}\right)+r(\boldsymbol{A} \boldsymbol{B})=n+r(\boldsymbol{A} \boldsymbol{B})






r


(




A




)




+








r


(




B




)













r






(





[


















E













n



























O

































O












A






B
























]





)






=








r





(





E













n



















)





+








r


(




A






B




)




=








n




+








r


(




A






B




)





所以



r

(

A

B

)

r

(

A

)

+

r

(

B

)

n

r(A B) \geqslant r(A)+r(B)-n






r


(


A


B


)













r


(


A


)




+








r


(


B


)













n







  1. r

    (

    A

    )

    =

    r

    (

    A

    T

    )

    =

    r

    (

    A

    A

    T

    )

    =

    r

    (

    A

    T

    A

    )

    r(A)=r\left(A^{\mathrm{T}}\right)=r\left(A A^{\mathrm{T}}\right)=r\left(A^{\mathrm{T}} A\right)






    r


    (


    A


    )




    =








    r






    (




    A












    T












    )






    =








    r






    (



    A



    A












    T












    )






    =








    r






    (




    A












    T











    A



    )









  2. r

    (

    A

    )

    =

    {

    n

    ,

    r

    (

    A

    )

    =

    n

    1

    ,

    r

    (

    A

    )

    =

    n

    1

    0

    ,

    r

    (

    A

    )

    <

    n

    1

    r\left(A^{*}\right)=\left\{\begin{array}{ll}n, & r(A)=n \\ 1, & r(A)=n-1 \\ 0, & r(A)<n-1\end{array}\right.






    r





    (



    A






















    )





    =



































































    n


    ,








    1


    ,








    0


    ,





























    r


    (


    A


    )




    =




    n








    r


    (


    A


    )




    =




    n









    1








    r


    (


    A


    )




    <




    n









    1



























    ,其中



    A

    A






    A









    n

    n






    n





    阶方阵


证明:

:当



r

(

A

)

=

n

r(\boldsymbol{A})=n






r


(




A




)




=








n





时,



A

A






A





可逆,



A

0

|A| \neq 0









A










































=









0





,由



A

A

=

A

E

A A^{*}=|A| E






A



A
























=











A





E





可知,



A

A






A









A

A^{*}







A

























均是可逆矩阵,故



r

(

A

)

=

n

r\left(A^{*}\right)=n






r





(



A






















)





=








n








r

(

A

)

=

n

1

r(\boldsymbol{A})=n-1






r


(




A




)




=








n













1





时,由矩阵的秩的定义知,



A

|A|









A








中存在



n

1

n-1






n













1





阶子式不等于零,而



A

A^{*}由







A































A

|A|









A








的元素的



a

i

j

a_{i j}







a











i


j






















的代数余子式



A

i

j

A_{i j}







A











i


j






















组成,故



r

(

A

)

1

r\left(\boldsymbol{A}^{*}\right) \geqslant 1






r





(





A
























)














1





,又



r

(

A

)

=

n

1

,

A

=

0

,

A

A

=

A

E

=

O

r(\boldsymbol{A})=n-1,|\boldsymbol{A}|=0, \boldsymbol{A} \boldsymbol{A}^{*}=|\boldsymbol{A}| \boldsymbol{E}=\boldsymbol{O}






r


(




A




)




=








n













1


,









A









=








0


,






A







A


























=













A









E






=










O







,得



r

(

A

)

+

r

(

A

)

n

r(A)+r\left(A^{*}\right) \leqslant n






r


(


A


)




+








r





(



A






















)














n





,而



r

(

A

)

=

n

1

r(A)=n-1






r


(


A


)




=








n













1





,故



r

(

A

)

1

r\left(A^{*}\right) \leqslant 1






r





(



A






















)














1





(或



A

A^{*}







A

























的每一列均是



A

x

=

0

Ax=0






A


x




=








0





的解向量,故



r

(

A

)

1

r\left(\boldsymbol{A}^{*}\right) \leqslant 1






r





(





A
























)














1





),所以



r

(

A

)

=

1

r\left(\boldsymbol{A}^{*}\right)=1






r





(





A
























)





=








1








r

(

A

)

<

n

1

r(\boldsymbol{A})<n-1






r


(




A




)




<








n













1





时,由



A

A






A





的秩的定义知,



A

|A|









A








的代数余子式全部为零,故



r

(

A

)

=

0

r\left(A^{*}\right)=0






r





(



A






















)





=








0




  • 注意伴随矩阵、可逆矩阵一定是方阵




  1. A

    A






    A









    n

    n






    n





    阶方针,



    A

    2

    =

    A

    A^{2}=A







    A











    2












    =








    A





    ,则



    r

    (

    A

    )

    +

    r

    (

    E

    A

    )

    =

    n

    r(\boldsymbol{A})+r(\boldsymbol{E}-\boldsymbol{A})=n






    r


    (




    A




    )




    +








    r


    (




    E

















    A




    )




    =








    n





证明

:由



A

2

=

A

A^{2}=A







A











2












=








A





,得



A

(

A

E

)

=

O

\boldsymbol{A}(\boldsymbol{A}-\boldsymbol{E})=\boldsymbol{O}








A




(




A

















E




)




=










O







,故



r

(

A

)

+

r

(

A

E

)

n

r(\boldsymbol{A})+r(\boldsymbol{A}-\boldsymbol{E}) \leqslant n






r


(




A




)




+








r


(




A

















E




)













n








r

(

A

)

+

r

(

A

E

)

=

r

(

A

)

+

r

(

E

A

)

r

(

A

+

E

A

)

=

r

(

E

)

=

n

r(A)+r(A-E)=r(A)+r(E-A) \geqslant r(A+E-A)=r(E)=n






r


(


A


)




+








r


(


A













E


)




=








r


(


A


)




+








r


(


E













A


)













r


(


A




+








E













A


)




=








r


(


E


)




=








n





,得证



r

(

A

)

+

r

(

A

E

)

=

n

r(\boldsymbol{A})+r(\boldsymbol{A}-\boldsymbol{E})=n






r


(




A




)




+








r


(




A

















E




)




=








n








  1. A

    A






    A









    n

    n






    n





    阶方针,



    A

    2

    =

    E

    A^{2}=E







    A











    2












    =








    E





    ,则



    r

    (

    A

    +

    E

    )

    +

    r

    (

    A

    E

    )

    =

    n

    r(A+E)+r(A-E)=n






    r


    (


    A




    +








    E


    )




    +








    r


    (


    A













    E


    )




    =








    n





解析

:由题设



A

2

=

E

A^{2}=E







A











2












=








E









(

A

+

E

)

(

A

E

)

=

A

2

E

=

O

(A+E)(A-E)=A^{2}-E=O






(


A




+








E


)


(


A













E


)




=









A











2





















E




=








O





于是有





r

(

A

+

E

)

+

r

(

A

E

)

n

r(A+E)+r(A-E) \leqslant n






r


(


A




+








E


)




+








r


(


A













E


)













n





注意到



r

(

A

E

)

=

r

(

A

+

E

)

r(\boldsymbol{A}-\boldsymbol{E})=r(-\boldsymbol{A}+\boldsymbol{E})






r


(




A

















E




)




=








r


(







A






+










E




)





,则





r

(

A

+

E

)

+

r

(

A

E

)

=

r

(

A

+

E

)

+

r

(

A

+

E

)

r

(

A

+

E

A

+

E

)

=

r

(

2

E

)

=

n

\begin{aligned} r(A+E)+r(A-E) &=r(A+E)+r(-A+E) \\ & \geqslant r(A+E-A+E) \\ &=r(2 E)=n \end{aligned}
















r


(


A




+




E


)




+




r


(


A









E


)









































=




r


(


A




+




E


)




+




r


(





A




+




E


)

















r


(


A




+




E









A




+




E


)












=




r


(


2


E


)




=




n






















综上所述



r

(

A

+

E

)

+

r

(

A

E

)

=

n

r(A+E)+r(A-E)=n






r


(


A




+








E


)




+








r


(


A













E


)




=








n





得证



版权声明:本文为baidu_41922918原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。