矩阵秩的不等式及其证明
-
(A
B
)
T
=
B
T
A
T
(A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}}
(
A
B
)
T
=
B
T
A
T
证明
:设
A
=
(
a
i
j
)
m
×
s
,
B
=
(
b
i
j
)
s
×
n
A=\left(a_{i j}\right)_{m \times s}, B=\left(b_{i j}\right)_{s \times n}
A
=
(
a
i
j
)
m
×
s
,
B
=
(
b
i
j
)
s
×
n
,记
A
B
=
C
=
(
c
i
j
)
m
×
n
,
B
T
A
T
=
D
=
(
d
i
j
)
n
×
m
A B=C=\left(c_{i j}\right)_{m \times n}, B^{T} A^{T}=D=\left(d_{i j}\right)_{n \times m}
A
B
=
C
=
(
c
i
j
)
m
×
n
,
B
T
A
T
=
D
=
(
d
i
j
)
n
×
m
,于是根据矩阵乘法公式,有
c
j
i
=
∑
k
=
1
s
a
j
k
b
k
i
c_{j i}=\sum_{k=1}^{s} a_{j k} b_{k i}
c
j
i
=
k
=
1
∑
s
a
j
k
b
k
i
而
B
T
\boldsymbol{B}^{\mathbf{T}}
B
T
的第
i
i
i
行为
(
b
1
i
,
⋯
,
b
s
i
)
,
A
T
\left(b_{1 i}, \cdots, b_{s i}\right), \boldsymbol{A}^{\mathrm{T}}
(
b
1
i
,
⋯
,
b
s
i
)
,
A
T
的第
j
j
j
列为
(
a
j
1
,
⋯
,
a
j
s
)
T
\left(a_{j 1}, \cdots, a_{j s}\right)^{T}
(
a
j
1
,
⋯
,
a
j
s
)
T
,因此
d
i
j
=
∑
k
=
1
s
b
k
i
a
j
k
=
∑
k
=
1
s
a
j
k
b
k
i
d_{i j}=\sum_{k=1}^{s} b_{k i} a_{j k}=\sum_{k=1}^{s} a_{j k} b_{k i}
d
i
j
=
k
=
1
∑
s
b
k
i
a
j
k
=
k
=
1
∑
s
a
j
k
b
k
i
所以
d
i
j
=
c
j
i
(
i
=
1
,
2
,
⋯
,
n
;
j
=
1
,
2
,
⋯
,
m
)
d_{i j}=c_{j i} \quad(i=1,2, \cdots, n ; j=1,2, \cdots, m)
d
i
j
=
c
j
i
(
i
=
1
,
2
,
⋯
,
n
;
j
=
1
,
2
,
⋯
,
m
)
即
D
=
C
T
D=C^{\mathrm{T}}
D
=
C
T
-
0⩽
r
(
A
)
⩽
min
{
m
,
n
}
0 \leqslant r(A) \leqslant \min \{m, n\}
0
⩽
r
(
A
)
⩽
min
{
m
,
n
}
这个由定义就很容易理解,不再证明
-
r(
A
B
)
⩽
min
{
r
(
A
)
,
r
(
B
)
}
r(A B) \leqslant \min \{r(\boldsymbol{A}), r(\boldsymbol{B})\}
r
(
A
B
)
⩽
min
{
r
(
A
)
,
r
(
B
)
}
分析
:对于向量组
α
1
,
α
2
,
⋯
,
α
s
\alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}
α
1
,
α
2
,
⋯
,
α
s
及
β
1
,
β
2
,
⋯
,
β
t
\beta_{1}, \beta_{2}, \cdots, \beta_{t}
β
1
,
β
2
,
⋯
,
β
t
,若任一
β
i
(
i
=
1
,
2
,
⋯
,
t
)
\boldsymbol{\beta}_{i}(i=1,2, \cdots, t)
β
i
(
i
=
1
,
2
,
⋯
,
t
)
均可由
α
1
,
α
2
,
⋯
,
α
s
\alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}
α
1
,
α
2
,
⋯
,
α
s
线性表出,则
r
(
β
1
,
β
2
,
⋯
,
β
t
)
⩽
r
(
α
1
,
α
2
,
⋯
,
α
s
)
r\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{t}\right) \leqslant r\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{s}\right)
r
(
β
1
,
β
2
,
⋯
,
β
t
)
⩽
r
(
α
1
,
α
2
,
⋯
,
α
s
)
,这是本题证明的关键依据
**证明:**不妨设
A
m
×
n
,
B
n
×
s
A_{m \times n}, B_{n \times s}
A
m
×
n
,
B
n
×
s
,将
B
,
A
B
B, A B
B
,
A
B
按行分块为
B
=
[
β
1
β
2
⋮
β
n
]
,
A
B
=
C
=
[
γ
1
γ
2
⋮
γ
m
]
B=\left[\begin{array}{c}\beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n}\end{array}\right], A B=C=\left[\begin{array}{c}\gamma_{1} \\ \gamma_{2} \\ \vdots \\ \gamma_{m}\end{array}\right]
B
=
⎣
⎢
⎢
⎢
⎡
β
1
β
2
⋮
β
n
⎦
⎥
⎥
⎥
⎤
,
A
B
=
C
=
⎣
⎢
⎢
⎢
⎡
γ
1
γ
2
⋮
γ
m
⎦
⎥
⎥
⎥
⎤
,于是
A
B
=
[
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋮
a
m
1
a
m
2
⋯
a
n
n
]
[
β
1
β
2
⋮
β
n
]
=
[
a
11
β
1
+
a
12
β
2
+
⋯
+
a
1
n
β
n
a
21
β
1
+
a
22
β
2
+
⋯
+
a
2
n
β
n
⋮
a
m
1
β
1
+
a
m
2
β
2
+
⋯
+
a
m
β
n
]
=
[
γ
1
γ
2
⋮
γ
m
]
A B=\left[\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{n n} \end{array}\right]\left[\begin{array}{c} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n} \end{array}\right]=\left[\begin{array}{c} a_{11} \beta_{1}+a_{12} \beta_{2}+\cdots+a_{1 n} \beta_{n} \\ a_{21} \beta_{1}+a_{22} \beta_{2}+\cdots+a_{2 n} \beta_{n} \\ \vdots \\ a_{m 1} \beta_{1}+a_{m 2} \beta_{2}+\cdots+a_{m} \beta_{n} \end{array}\right]=\left[\begin{array}{c} \gamma_{1} \\ \gamma_{2} \\ \vdots \\ \gamma_{m} \end{array}\right]
A
B
=
⎣
⎢
⎢
⎢
⎡
a
1
1
a
2
1
⋮
a
m
1
a
1
2
a
2
2
⋮
a
m
2
⋯
⋯
⋯
a
1
n
a
2
n
⋮
a
n
n
⎦
⎥
⎥
⎥
⎤
⎣
⎢
⎢
⎢
⎡
β
1
β
2
⋮
β
n
⎦
⎥
⎥
⎥
⎤
=
⎣
⎢
⎢
⎢
⎡
a
1
1
β
1
+
a
1
2
β
2
+
⋯
+
a
1
n
β
n
a
2
1
β
1
+
a
2
2
β
2
+
⋯
+
a
2
n
β
n
⋮
a
m
1
β
1
+
a
m
2
β
2
+
⋯
+
a
m
β
n
⎦
⎥
⎥
⎥
⎤
=
⎣
⎢
⎢
⎢
⎡
γ
1
γ
2
⋮
γ
m
⎦
⎥
⎥
⎥
⎤
所以
A
B
AB
A
B
的行向量
γ
i
(
i
=
1
,
2
,
⋯
,
m
)
\gamma_{i}(i=1,2, \cdots, m)
γ
i
(
i
=
1
,
2
,
⋯
,
m
)
均可由
B
B
B
的行向量线性表出,故
r
(
A
B
)
⩽
r
(
B
)
r(A B) \leqslant r(B)
r
(
A
B
)
⩽
r
(
B
)
同理可证
r
(
A
B
)
⩽
r
(
A
)
r(A B) \leqslant r(A)
r
(
A
B
)
⩽
r
(
A
)
,故有
r
(
A
B
)
⩽
min
{
r
(
A
)
,
r
(
B
)
}
r(A B) \leqslant \min \{r(A), r(B)\}
r
(
A
B
)
⩽
min
{
r
(
A
)
,
r
(
B
)
}
-
r(
A
+
B
)
⩽
r
(
A
)
+
r
(
B
)
r(A+B) \leqslant r(A)+r(B)
r
(
A
+
B
)
⩽
r
(
A
)
+
r
(
B
)
证明
:设
r
(
A
)
=
p
,
r
(
B
)
=
q
r(A)=p, r(\boldsymbol{B})=q
r
(
A
)
=
p
,
r
(
B
)
=
q
,将
A
,
B
A,B
A
,
B
按列分块为
A
=
[
α
1
,
α
2
,
⋯
,
α
s
]
,
B
=
[
β
1
,
β
2
,
⋯
,
β
s
]
A=\left[\alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}\right], B=\left[\beta_{1}, \beta_{2}, \cdots, \beta_{s}\right]
A
=
[
α
1
,
α
2
,
⋯
,
α
s
]
,
B
=
[
β
1
,
β
2
,
⋯
,
β
s
]
于是
[
A
,
B
]
=
[
α
1
,
α
2
,
⋯
,
α
s
,
β
1
,
β
2
,
⋯
,
β
s
]
A
+
B
=
[
α
1
+
β
1
,
α
2
+
β
2
,
⋯
,
α
s
+
β
s
]
\begin{array}{c} {[A, B]=\left[\alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}, \beta_{1}, \beta_{2}, \cdots, \beta_{s}\right]} \\ A+B=\left[\alpha_{1}+\beta_{1}, \alpha_{2}+\beta_{2}, \cdots, \alpha_{s}+\beta_{s}\right] \end{array}
[
A
,
B
]
=
[
α
1
,
α
2
,
⋯
,
α
s
,
β
1
,
β
2
,
⋯
,
β
s
]
A
+
B
=
[
α
1
+
β
1
,
α
2
+
β
2
,
⋯
,
α
s
+
β
s
]
因
α
i
+
β
i
(
i
=
1
,
2
,
⋯
,
s
)
\boldsymbol{\alpha}_{i}+\boldsymbol{\beta}_{i}(i=1,2, \cdots, s)
α
i
+
β
i
(
i
=
1
,
2
,
⋯
,
s
)
均可由向量组
α
1
,
α
2
,
⋯
,
α
s
,
β
1
,
β
2
,
⋯
,
β
s
\alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}, \beta_{1}, \beta_{2}, \cdots, \beta_{s}
α
1
,
α
2
,
⋯
,
α
s
,
β
1
,
β
2
,
⋯
,
β
s
线性表出,故
r
(
A
+
B
)
⩽
r
(
[
A
,
B
]
)
r(A+B) \leqslant r([A, B])
r
(
A
+
B
)
⩽
r
(
[
A
,
B
]
)
又设
A
,
B
A,B
A
,
B
的列向量的极大线性无关组分别为
α
1
,
α
2
,
⋯
,
α
p
\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}
α
1
,
α
2
,
⋯
,
α
p
和
β
1
,
β
2
,
⋯
,
β
q
\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{q}
β
1
,
β
2
,
⋯
,
β
q
。将
A
A
A
的极大线性无关组
α
1
,
α
2
,
⋯
,
α
p
\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}
α
1
,
α
2
,
⋯
,
α
p
扩充成
[
A
,
B
]
[A,B]
[
A
,
B
]
的极大线性无关组,设为
α
1
,
α
2
,
⋯
,
α
p
,
β
1
,
β
2
,
⋯
,
β
w
\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}, \beta_{1}, \beta_{2}, \cdots, \beta_{w}
α
1
,
α
2
,
⋯
,
α
p
,
β
1
,
β
2
,
⋯
,
β
w
,显然
w
⩽
q
w \leqslant q
w
⩽
q
,故有
r
(
[
A
,
B
]
)
=
p
+
w
⩽
p
+
q
=
r
(
A
)
+
r
(
B
)
r([A, B])=p+w \leqslant p+q=r(A)+r(B)
r
(
[
A
,
B
]
)
=
p
+
w
⩽
p
+
q
=
r
(
A
)
+
r
(
B
)
故
r
(
A
+
B
)
⩽
r
(
[
A
,
B
]
)
⩽
r
(
A
)
+
r
(
B
)
r(A+B) \leqslant r([A, B]) \leqslant r(A)+r(B)
r
(
A
+
B
)
⩽
r
(
[
A
,
B
]
)
⩽
r
(
A
)
+
r
(
B
)
-
r(
[
A
O
O
B
]
)
=
r
(
A
)
+
r
(
B
)
r\left(\left[\begin{array}{ll}A & O \\ O & B\end{array}\right]\right)=r(A)+r(B)
r
(
[
A
O
O
B
]
)
=
r
(
A
)
+
r
(
B
)
-
r(
A
)
+
r
(
B
)
⩽
r
(
[
A
O
C
B
]
)
⩽
r
(
A
)
+
r
(
B
)
+
r
(
C
)
r(\boldsymbol{A})+r(\boldsymbol{B}) \leqslant r\left(\left[\begin{array}{cc}\boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{C} & \boldsymbol{B}\end{array}\right]\right) \leqslant r(\boldsymbol{A})+r(\boldsymbol{B})+r(\boldsymbol{C})
r
(
A
)
+
r
(
B
)
⩽
r
(
[
A
C
O
B
]
)
⩽
r
(
A
)
+
r
(
B
)
+
r
(
C
)
证明:
r
(
A
)
+
r
(
B
)
=
r
(
[
A
,
O
]
)
+
r
(
[
O
,
B
]
)
=
r
(
[
A
O
O
B
]
)
⩽
r
(
[
A
O
C
B
]
)
⩽
r
(
[
A
,
O
]
)
+
r
(
[
C
,
B
]
)
⩽
r
(
A
)
+
r
(
B
)
+
r
(
C
)
\begin{aligned} r(A)+r(B) &=r([A, O])+r([O, B]) \\ &=r\left(\left[\begin{array}{cc} A & O \\ O & B \end{array}\right]\right) \leqslant r\left(\left[\begin{array}{cc} A & O \\ C & B \end{array}\right]\right) \\ & \leqslant r([A, O])+r([C, B]) \\ & \leqslant r(A)+r(B)+r(C) \end{aligned}
r
(
A
)
+
r
(
B
)
=
r
(
[
A
,
O
]
)
+
r
(
[
O
,
B
]
)
=
r
(
[
A
O
O
B
]
)
⩽
r
(
[
A
C
O
B
]
)
⩽
r
(
[
A
,
O
]
)
+
r
(
[
C
,
B
]
)
⩽
r
(
A
)
+
r
(
B
)
+
r
(
C
)
(因
r
(
B
)
⩽
r
(
[
C
,
B
]
)
⩽
r
(
B
)
+
r
(
C
)
r(\boldsymbol{B}) \leqslant r([\boldsymbol{C}, \boldsymbol{B}]) \leqslant r(\boldsymbol{B})+r(\boldsymbol{C})
r
(
B
)
⩽
r
(
[
C
,
B
]
)
⩽
r
(
B
)
+
r
(
C
)
)
注解
:第五题也为本题的一个特例
-
r(
A
B
)
⩾
r
(
A
)
+
r
(
B
)
−
n
r(A B) \geqslant r(A)+r(B)-n
r
(
A
B
)
⩾
r
(
A
)
+
r
(
B
)
−
n
(当
AB
=
O
A B=O
A
B
=
O
时,
r(
A
)
+
r
(
B
)
⩽
n
r(A)+r(B) \leqslant n
r
(
A
)
+
r
(
B
)
⩽
n
,
nn
n
是
AA
A
的列数或
BB
B
的行数)
证明:
:对
[
A
O
E
n
B
]
\left[\begin{array}{ll}\mathbf{A} & \boldsymbol{O} \\ \boldsymbol{E}_{n} & \boldsymbol{B}\end{array}\right]
[
A
E
n
O
B
]
做初等变换,得:
[
A
O
E
n
B
]
→
[
O
−
A
B
E
n
B
]
→
[
O
−
A
B
E
n
O
]
→
[
E
n
O
O
A
B
]
\left[\begin{array}{cc} A & O \\ E_{n} & B \end{array}\right] \rightarrow\left[\begin{array}{cc} O & -A B \\ E_{n} & B \end{array}\right] \rightarrow\left[\begin{array}{cc} O & -A B \\ E_{n} & O \end{array}\right] \rightarrow\left[\begin{array}{cc} E_{n} & O \\ O & A B \end{array}\right]
[
A
E
n
O
B
]
→
[
O
E
n
−
A
B
B
]
→
[
O
E
n
−
A
B
O
]
→
[
E
n
O
O
A
B
]
又显然
r
(
A
)
+
r
(
B
)
=
r
(
[
A
O
O
B
]
)
⩽
r
(
[
A
O
E
n
B
]
)
r(A)+r(B)=r\left(\left[\begin{array}{ll}A & O \\ O & B\end{array}\right]\right) \leqslant r\left(\left[\begin{array}{ll}A & O \\ E_{n} & B\end{array}\right]\right)
r
(
A
)
+
r
(
B
)
=
r
(
[
A
O
O
B
]
)
⩽
r
(
[
A
E
n
O
B
]
)
,则
r
(
A
)
+
r
(
B
)
⩽
r
(
[
E
n
O
O
A
B
]
)
=
r
(
E
n
)
+
r
(
A
B
)
=
n
+
r
(
A
B
)
r(\boldsymbol{A})+r(\boldsymbol{B}) \leqslant r\left(\left[\begin{array}{cc} \boldsymbol{E}_{n} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{A} \boldsymbol{B} \end{array}\right]\right)=r\left(\boldsymbol{E}_{n}\right)+r(\boldsymbol{A} \boldsymbol{B})=n+r(\boldsymbol{A} \boldsymbol{B})
r
(
A
)
+
r
(
B
)
⩽
r
(
[
E
n
O
O
A
B
]
)
=
r
(
E
n
)
+
r
(
A
B
)
=
n
+
r
(
A
B
)
所以
r
(
A
B
)
⩾
r
(
A
)
+
r
(
B
)
−
n
r(A B) \geqslant r(A)+r(B)-n
r
(
A
B
)
⩾
r
(
A
)
+
r
(
B
)
−
n
-
r(
A
)
=
r
(
A
T
)
=
r
(
A
A
T
)
=
r
(
A
T
A
)
r(A)=r\left(A^{\mathrm{T}}\right)=r\left(A A^{\mathrm{T}}\right)=r\left(A^{\mathrm{T}} A\right)
r
(
A
)
=
r
(
A
T
)
=
r
(
A
A
T
)
=
r
(
A
T
A
)
-
r(
A
∗
)
=
{
n
,
r
(
A
)
=
n
1
,
r
(
A
)
=
n
−
1
0
,
r
(
A
)
<
n
−
1
r\left(A^{*}\right)=\left\{\begin{array}{ll}n, & r(A)=n \\ 1, & r(A)=n-1 \\ 0, & r(A)<n-1\end{array}\right.
r
(
A
∗
)
=
⎩
⎨
⎧
n
,
1
,
0
,
r
(
A
)
=
n
r
(
A
)
=
n
−
1
r
(
A
)
<
n
−
1
,其中
AA
A
为
nn
n
阶方阵
证明:
:当
r
(
A
)
=
n
r(\boldsymbol{A})=n
r
(
A
)
=
n
时,
A
A
A
可逆,
∣
A
∣
≠
0
|A| \neq 0
∣
A
∣
=
0
,由
A
A
∗
=
∣
A
∣
E
A A^{*}=|A| E
A
A
∗
=
∣
A
∣
E
可知,
A
A
A
和
A
∗
A^{*}
A
∗
均是可逆矩阵,故
r
(
A
∗
)
=
n
r\left(A^{*}\right)=n
r
(
A
∗
)
=
n
当
r
(
A
)
=
n
−
1
r(\boldsymbol{A})=n-1
r
(
A
)
=
n
−
1
时,由矩阵的秩的定义知,
∣
A
∣
|A|
∣
A
∣
中存在
n
−
1
n-1
n
−
1
阶子式不等于零,而
A
∗
由
A^{*}由
A
∗
由
∣
A
∣
|A|
∣
A
∣
的元素的
a
i
j
a_{i j}
a
i
j
的代数余子式
A
i
j
A_{i j}
A
i
j
组成,故
r
(
A
∗
)
⩾
1
r\left(\boldsymbol{A}^{*}\right) \geqslant 1
r
(
A
∗
)
⩾
1
,又
r
(
A
)
=
n
−
1
,
∣
A
∣
=
0
,
A
A
∗
=
∣
A
∣
E
=
O
r(\boldsymbol{A})=n-1,|\boldsymbol{A}|=0, \boldsymbol{A} \boldsymbol{A}^{*}=|\boldsymbol{A}| \boldsymbol{E}=\boldsymbol{O}
r
(
A
)
=
n
−
1
,
∣
A
∣
=
0
,
A
A
∗
=
∣
A
∣
E
=
O
,得
r
(
A
)
+
r
(
A
∗
)
⩽
n
r(A)+r\left(A^{*}\right) \leqslant n
r
(
A
)
+
r
(
A
∗
)
⩽
n
,而
r
(
A
)
=
n
−
1
r(A)=n-1
r
(
A
)
=
n
−
1
,故
r
(
A
∗
)
⩽
1
r\left(A^{*}\right) \leqslant 1
r
(
A
∗
)
⩽
1
(或
A
∗
A^{*}
A
∗
的每一列均是
A
x
=
0
Ax=0
A
x
=
0
的解向量,故
r
(
A
∗
)
⩽
1
r\left(\boldsymbol{A}^{*}\right) \leqslant 1
r
(
A
∗
)
⩽
1
),所以
r
(
A
∗
)
=
1
r\left(\boldsymbol{A}^{*}\right)=1
r
(
A
∗
)
=
1
当
r
(
A
)
<
n
−
1
r(\boldsymbol{A})<n-1
r
(
A
)
<
n
−
1
时,由
A
A
A
的秩的定义知,
∣
A
∣
|A|
∣
A
∣
的代数余子式全部为零,故
r
(
A
∗
)
=
0
r\left(A^{*}\right)=0
r
(
A
∗
)
=
0
- 注意伴随矩阵、可逆矩阵一定是方阵
-
若
AA
A
为
nn
n
阶方针,
A2
=
A
A^{2}=A
A
2
=
A
,则
r(
A
)
+
r
(
E
−
A
)
=
n
r(\boldsymbol{A})+r(\boldsymbol{E}-\boldsymbol{A})=n
r
(
A
)
+
r
(
E
−
A
)
=
n
证明
:由
A
2
=
A
A^{2}=A
A
2
=
A
,得
A
(
A
−
E
)
=
O
\boldsymbol{A}(\boldsymbol{A}-\boldsymbol{E})=\boldsymbol{O}
A
(
A
−
E
)
=
O
,故
r
(
A
)
+
r
(
A
−
E
)
⩽
n
r(\boldsymbol{A})+r(\boldsymbol{A}-\boldsymbol{E}) \leqslant n
r
(
A
)
+
r
(
A
−
E
)
⩽
n
又
r
(
A
)
+
r
(
A
−
E
)
=
r
(
A
)
+
r
(
E
−
A
)
⩾
r
(
A
+
E
−
A
)
=
r
(
E
)
=
n
r(A)+r(A-E)=r(A)+r(E-A) \geqslant r(A+E-A)=r(E)=n
r
(
A
)
+
r
(
A
−
E
)
=
r
(
A
)
+
r
(
E
−
A
)
⩾
r
(
A
+
E
−
A
)
=
r
(
E
)
=
n
,得证
r
(
A
)
+
r
(
A
−
E
)
=
n
r(\boldsymbol{A})+r(\boldsymbol{A}-\boldsymbol{E})=n
r
(
A
)
+
r
(
A
−
E
)
=
n
-
若
AA
A
为
nn
n
阶方针,
A2
=
E
A^{2}=E
A
2
=
E
,则
r(
A
+
E
)
+
r
(
A
−
E
)
=
n
r(A+E)+r(A-E)=n
r
(
A
+
E
)
+
r
(
A
−
E
)
=
n
解析
:由题设
A
2
=
E
A^{2}=E
A
2
=
E
知
(
A
+
E
)
(
A
−
E
)
=
A
2
−
E
=
O
(A+E)(A-E)=A^{2}-E=O
(
A
+
E
)
(
A
−
E
)
=
A
2
−
E
=
O
于是有
r
(
A
+
E
)
+
r
(
A
−
E
)
⩽
n
r(A+E)+r(A-E) \leqslant n
r
(
A
+
E
)
+
r
(
A
−
E
)
⩽
n
注意到
r
(
A
−
E
)
=
r
(
−
A
+
E
)
r(\boldsymbol{A}-\boldsymbol{E})=r(-\boldsymbol{A}+\boldsymbol{E})
r
(
A
−
E
)
=
r
(
−
A
+
E
)
,则
r
(
A
+
E
)
+
r
(
A
−
E
)
=
r
(
A
+
E
)
+
r
(
−
A
+
E
)
⩾
r
(
A
+
E
−
A
+
E
)
=
r
(
2
E
)
=
n
\begin{aligned} r(A+E)+r(A-E) &=r(A+E)+r(-A+E) \\ & \geqslant r(A+E-A+E) \\ &=r(2 E)=n \end{aligned}
r
(
A
+
E
)
+
r
(
A
−
E
)
=
r
(
A
+
E
)
+
r
(
−
A
+
E
)
⩾
r
(
A
+
E
−
A
+
E
)
=
r
(
2
E
)
=
n
综上所述
r
(
A
+
E
)
+
r
(
A
−
E
)
=
n
r(A+E)+r(A-E)=n
r
(
A
+
E
)
+
r
(
A
−
E
)
=
n
得证