x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = 1.0
def forward(x):
return x * w
def cost(xs, ys):
cost = 0
for x, y in zip(xs, ys):
y_p = forward(x)
cost += (y_p - y) ** 2
return cost / len(xs)
def gradint(xs, ys):
grad = 0
for x, y in zip(xs, ys):
grad += 2 * x * (x * w - y)
return grad / len(xs)
for epoch in range(100):
cost_val = cost(x_data, y_data)
grad_val = gradint(x_data, y_data)
w -= 0.01 * grad_val
plt.plot(w_list,mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()
版权声明:本文为opooc原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。