通过中序和后序建立一个二叉树(或前序和中序),递归解法三点要注意的:
1.不要new新的vector来存储左子树和右子树的中序和后序序列,这样做容易
Memory Limit Exceeded
2.构造新函数的时候参数值要记得用引用,要不然也会
Memory Limit Exceeded
3.弄清楚左子树(右子树)的中序(后序)的起始点和终止点的下标
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode *buildTree(vector<int> &inorder, vector<int> &postorder) {
if(inorder.size() == 0 || postorder.size() == 0 || inorder.size() != postorder.size()){
return NULL;
}
return buildTree(inorder, 0, inorder.size() - 1, postorder, 0, postorder.size() - 1);
}
TreeNode *buildTree(vector<int> &inorder, int in_start, int in_end, vector<int> &postorder, int post_start, int post_end){
if(in_start > in_end || post_start > post_end)
return NULL;
int i, j;
int val = postorder.at(post_end);
TreeNode *root = new TreeNode(val);
for(i = in_start; i <= in_end; i++){
if(inorder.at(i) == val)
break;
}
TreeNode *left = buildTree(inorder, in_start, i - 1, postorder, post_start, post_start + i - in_start - 1);
TreeNode *right = buildTree(inorder, i + 1, in_end, postorder, post_start + i - in_start, post_end - 1);
root -> left = left;
root -> right = right;
return root;
}
};
版权声明:本文为smllyy原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。