futureTask 继承了Runable 接口,所以本身就是一个线程,内部实现了run方法,
当主线程使用ExecutorService.submit ()方法提交任务
或者使用 futureTask.start() 启动子线程的时候,
开始执行futuretask的run 方法
,run 方法内部 调用了 Callable 接口的call方法 ,然后这个线程慢慢执行的过程中, 主线程执行完其他操作,调用 futureTask.get()方法的时候,如果子线程没有执行完毕,则把主线程添加到当前futureTask的阻塞队列并等待,等子线程执行完毕之后,调用unpark 通知主线程,主线程继续执行,这就是异步的原理。
标红部分的原理是什么样的?
public <T> Future<T>
submit
(Callable<T> task) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask =
newTaskFor
(task);
execute
(ftask);
return ftask;
}
protected <T> RunnableFuture<T>
newTaskFor
(Callable<T> callable) {
return new FutureTask<T>(callable);
}
ThreadPoolExecutor 的
execute
(Runnable r)方法内部实现
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* Proceed in 3 steps:
*
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn’t, by returning false.
*
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
*
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
addWorker
实现
private boolean addWorker(Runnable firstTask, boolean core) {
…
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start();
workerStarted = true;
}
…
}
worker 构造函数
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
}
t.start() 的t 是创建worker 的时候新建的线程,并且线程关联的runnable 就是worker 本身。
所以调用t.start() 的时候其实就是 调用 worker 的run 方法
public void run() {
runWorker(this);
}
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
可以看出整体逻辑就是 Executor 创建了一个新的线程,线程内部的方法调用 futuretask 的 run 方法。
futuretask 执行逻辑,请参考futuretask 原理。