电力系统微网故障检测数据集及代码python

  • Post author:
  • Post category:python




利用matlab/simulink搭建电力系统微网故障检测模型,输出故障数据集,输入到ann模型中用于分类检测。


下载地址:


电力系统微网故障检测数据集、代码及仿真模型




current



load



result



Time_1.0



Time_2.0



Time_3.0



Time_4.0



Time_5.0



Time_6.0



Time_7.0



Time_8.0



Time_9.0



Time_10.0



Time_11.0



Time_12.0



Time_13.0



Time_14.0



Time_15.0



Time_16.0



0


8.858

492

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0


1


4.429

246

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0


2


4.429

246

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0


3


4.429

246

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0


4


4.429

246

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0


5


7.382

410

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0


6


14.76

819.9

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0


7


26.57

1476

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0


8


29.53

1640

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0


9


14.76

819.9

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0


10


8.858

492

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0


11


22.12

983.9

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0


12


25.17

656

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0


13


27.72

410

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0


14


28.71

246

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0


15


26.06

328

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1


16


18.79

819.9

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0


17


7.311

1476

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0


18


33.96

1886

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0


19


32.48

1804

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0


20


32.48

1804

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0


21


33.96

1886

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0


22


26.57

1476

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0


23


5.249

1093

2

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0


24


2.625

546.7

2

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0


25


2.625

546.7

2

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0


26


2.625

546.7

2

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0


27


2.625

546.7

2

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

检测代码实例

{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "name": "ANN Model Code.ipynb",
      "provenance": [],
      "collapsed_sections": [],
      "include_colab_link": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/Harsh24032000/Fault-Detection-in-Power-Microgrid/blob/master/ANN_Model_Code.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "vh_2PFdoc83n",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 34
        },
        "outputId": "3c535a50-5853-468d-b9f9-5a1d148a13ea"
      },
      "source": [
        "import numpy as np\n",
        "import pandas as pd\n",
        "from keras.models import Sequential\n",
        "from keras.layers import Dense\n",
        "from keras.layers import Dropout\n",
        "from keras.wrappers.scikit_learn import KerasClassifier\n",
        "from sklearn.model_selection import cross_val_score\n",
        "from sklearn.preprocessing import LabelEncoder\n",
        "from sklearn.model_selection import StratifiedKFold\n",
        "from sklearn.preprocessing import StandardScaler\n",
        "from sklearn.pipeline import Pipeline"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Using TensorFlow backend.\n"
          ],
          "name": "stderr"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "p4mPCB1wwZQC",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "seed=7\n",
        "np.random.seed(seed)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "dOR-kUC5dPB7",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 360
        },
        "outputId": "eb51bf24-927c-49ee-851f-91541dde974c"
      },
      "source": [
        "df=pd.read_excel('Data.xlsx')\n",
        "df1=df.values\n",
        "df"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "error",
          "ename": "FileNotFoundError",
          "evalue": "ignored",
          "traceback": [
            "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
            "\u001b[0;31mFileNotFoundError\u001b[0m                         Traceback (most recent call last)",
            "\u001b[0;32m<ipython-input-4-fec2305a1130>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdf\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_excel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Data.xlsx'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      2\u001b[0m \u001b[0mdf1\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      3\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/pandas/io/excel/_base.py\u001b[0m in \u001b[0;36mread_excel\u001b[0;34m(io, sheet_name, header, names, index_col, usecols, squeeze, dtype, engine, converters, true_values, false_values, skiprows, nrows, na_values, keep_default_na, verbose, parse_dates, date_parser, thousands, comment, skipfooter, convert_float, mangle_dupe_cols, **kwds)\u001b[0m\n\u001b[1;32m    302\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    303\u001b[0m     \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mio\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mExcelFile\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 304\u001b[0;31m         \u001b[0mio\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mExcelFile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mio\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mengine\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mengine\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    305\u001b[0m     \u001b[0;32melif\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mio\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mengine\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    306\u001b[0m         raise ValueError(\n",
            "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/pandas/io/excel/_base.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, io, engine)\u001b[0m\n\u001b[1;32m    822\u001b[0m         \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_io\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstringify_path\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mio\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    823\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 824\u001b[0;31m         \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reader\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engines\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mengine\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_io\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    825\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    826\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m__fspath__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/pandas/io/excel/_xlrd.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, filepath_or_buffer)\u001b[0m\n\u001b[1;32m     19\u001b[0m         \u001b[0merr_msg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"Install xlrd >= 1.0.0 for Excel support\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     20\u001b[0m         \u001b[0mimport_optional_dependency\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"xlrd\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mextra\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merr_msg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 21\u001b[0;31m         \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     22\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     23\u001b[0m     \u001b[0;34m@\u001b[0m\u001b[0mproperty\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/pandas/io/excel/_base.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, filepath_or_buffer)\u001b[0m\n\u001b[1;32m    351\u001b[0m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbook\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload_workbook\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    352\u001b[0m         \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 353\u001b[0;31m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbook\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload_workbook\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    354\u001b[0m         \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbytes\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    355\u001b[0m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbook\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload_workbook\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mBytesIO\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/pandas/io/excel/_xlrd.py\u001b[0m in \u001b[0;36mload_workbook\u001b[0;34m(self, filepath_or_buffer)\u001b[0m\n\u001b[1;32m     34\u001b[0m             \u001b[0;32mreturn\u001b[0m \u001b[0mopen_workbook\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfile_contents\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     35\u001b[0m         \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 36\u001b[0;31m             \u001b[0;32mreturn\u001b[0m \u001b[0mopen_workbook\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     37\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     38\u001b[0m     \u001b[0;34m@\u001b[0m\u001b[0mproperty\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/xlrd/__init__.py\u001b[0m in \u001b[0;36mopen_workbook\u001b[0;34m(filename, logfile, verbosity, use_mmap, file_contents, encoding_override, formatting_info, on_demand, ragged_rows)\u001b[0m\n\u001b[1;32m    114\u001b[0m         \u001b[0mpeek\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfile_contents\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mpeeksz\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    115\u001b[0m     \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 116\u001b[0;31m         \u001b[0;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"rb\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    117\u001b[0m             \u001b[0mpeek\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpeeksz\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    118\u001b[0m     \u001b[0;32mif\u001b[0m \u001b[0mpeek\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34mb\"PK\\x03\\x04\"\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# a ZIP file\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'Data.xlsx'"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "rOOARm0VdcBp",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "po=pd.DataFrame(columns=['current','load','result','Time'])"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "fbVDvAuRdjpn",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "for i in range(23):\n",
        "    po=po.append({'current':df.at[i,\"Current 1\"],'load':df.at[i,\"P_L 1\"],'result':1,'Time':df.at[i,\"Time\"]},ignore_index=True)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "oGNxLOtXdlhY",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 470
        },
        "outputId": "13485257-89c0-4378-e9c9-c63977b1cff6"
      },
      "source": [
        "po"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>0</th>\n",
              "      <th>1</th>\n",
              "      <th>2</th>\n",
              "      <th>3</th>\n",
              "      <th>4</th>\n",
              "      <th>5</th>\n",
              "      <th>6</th>\n",
              "      <th>7</th>\n",
              "      <th>8</th>\n",
              "      <th>9</th>\n",
              "      <th>10</th>\n",
              "      <th>11</th>\n",
              "      <th>12</th>\n",
              "      <th>13</th>\n",
              "      <th>14</th>\n",
              "      <th>15</th>\n",
              "      <th>16</th>\n",
              "      <th>17</th>\n",
              "      <th>18</th>\n",
              "      <th>19</th>\n",
              "      <th>20</th>\n",
              "      <th>21</th>\n",
              "      <th>22</th>\n",
              "      <th>23</th>\n",
              "      <th>24</th>\n",
              "      <th>25</th>\n",
              "      <th>26</th>\n",
              "      <th>27</th>\n",
              "      <th>28</th>\n",
              "      <th>29</th>\n",
              "      <th>30</th>\n",
              "      <th>31</th>\n",
              "      <th>32</th>\n",
              "      <th>33</th>\n",
              "      <th>34</th>\n",
              "      <th>35</th>\n",
              "      <th>36</th>\n",
              "      <th>37</th>\n",
              "      <th>38</th>\n",
              "      <th>39</th>\n",
              "      <th>...</th>\n",
              "      <th>3097</th>\n",
              "      <th>3098</th>\n",
              "      <th>3099</th>\n",
              "      <th>3100</th>\n",
              "      <th>3101</th>\n",
              "      <th>3102</th>\n",
              "      <th>3103</th>\n",
              "      <th>3104</th>\n",
              "      <th>3105</th>\n",
              "      <th>3106</th>\n",
              "      <th>3107</th>\n",
              "      <th>3108</th>\n",
              "      <th>3109</th>\n",
              "      <th>3110</th>\n",
              "      <th>3111</th>\n",
              "      <th>3112</th>\n",
              "      <th>3113</th>\n",
              "      <th>3114</th>\n",
              "      <th>3115</th>\n",
              "      <th>3116</th>\n",
              "      <th>3117</th>\n",
              "      <th>3118</th>\n",
              "      <th>3119</th>\n",
              "      <th>3120</th>\n",
              "      <th>3121</th>\n",
              "      <th>3122</th>\n",
              "      <th>3123</th>\n",
              "      <th>3124</th>\n",
              "      <th>3125</th>\n",
              "      <th>3126</th>\n",
              "      <th>3127</th>\n",
              "      <th>3128</th>\n",
              "      <th>3129</th>\n",
              "      <th>3130</th>\n",
              "      <th>3131</th>\n",
              "      <th>3132</th>\n",
              "      <th>3133</th>\n",
              "      <th>3134</th>\n",
              "      <th>3135</th>\n",
              "      <th>label</th>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>image</th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "      <th></th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>train0.jpg</th>\n",
              "      <td>165</td>\n",
              "      <td>166</td>\n",
              "      <td>174</td>\n",
              "      <td>174</td>\n",
              "      <td>175</td>\n",
              "      <td>193</td>\n",
              "      <td>196</td>\n",
              "      <td>194</td>\n",
              "      <td>200</td>\n",
              "      <td>193</td>\n",
              "      <td>197</td>\n",
              "      <td>194</td>\n",
              "      <td>190</td>\n",
              "      <td>198</td>\n",
              "      <td>194</td>\n",
              "      <td>200</td>\n",
              "      <td>190</td>\n",
              "      <td>201</td>\n",
              "      <td>197</td>\n",
              "      <td>201</td>\n",
              "      <td>208</td>\n",
              "      <td>209</td>\n",
              "      <td>201</td>\n",
              "      <td>203</td>\n",
              "      <td>203</td>\n",
              "      <td>199</td>\n",
              "      <td>192</td>\n",
              "      <td>193</td>\n",
              "      <td>182</td>\n",
              "      <td>192</td>\n",
              "      <td>180</td>\n",
              "      <td>181</td>\n",
              "      <td>173</td>\n",
              "      <td>160</td>\n",
              "      <td>182</td>\n",
              "      <td>186</td>\n",
              "      <td>188</td>\n",
              "      <td>189</td>\n",
              "      <td>192</td>\n",
              "      <td>184</td>\n",
              "      <td>...</td>\n",
              "      <td>203</td>\n",
              "      <td>194</td>\n",
              "      <td>197</td>\n",
              "      <td>192</td>\n",
              "      <td>184</td>\n",
              "      <td>201</td>\n",
              "      <td>200</td>\n",
              "      <td>192</td>\n",
              "      <td>188</td>\n",
              "      <td>191</td>\n",
              "      <td>196</td>\n",
              "      <td>201</td>\n",
              "      <td>192</td>\n",
              "      <td>186</td>\n",
              "      <td>194</td>\n",
              "      <td>185</td>\n",
              "      <td>149</td>\n",
              "      <td>181</td>\n",
              "      <td>181</td>\n",
              "      <td>160</td>\n",
              "      <td>161</td>\n",
              "      <td>151</td>\n",
              "      <td>166</td>\n",
              "      <td>166</td>\n",
              "      <td>144</td>\n",
              "      <td>162</td>\n",
              "      <td>145</td>\n",
              "      <td>145</td>\n",
              "      <td>140</td>\n",
              "      <td>103</td>\n",
              "      <td>100</td>\n",
              "      <td>97</td>\n",
              "      <td>95</td>\n",
              "      <td>114</td>\n",
              "      <td>119</td>\n",
              "      <td>69</td>\n",
              "      <td>79</td>\n",
              "      <td>90</td>\n",
              "      <td>78</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>train1.jpg</th>\n",
              "      <td>27</td>\n",
              "      <td>44</td>\n",
              "      <td>61</td>\n",
              "      <td>78</td>\n",
              "      <td>96</td>\n",
              "      <td>109</td>\n",
              "      <td>120</td>\n",
              "      <td>123</td>\n",
              "      <td>130</td>\n",
              "      <td>136</td>\n",
              "      <td>144</td>\n",
              "      <td>150</td>\n",
              "      <td>163</td>\n",
              "      <td>169</td>\n",
              "      <td>172</td>\n",
              "      <td>165</td>\n",
              "      <td>157</td>\n",
              "      <td>163</td>\n",
              "      <td>169</td>\n",
              "      <td>170</td>\n",
              "      <td>173</td>\n",
              "      <td>173</td>\n",
              "      <td>166</td>\n",
              "      <td>170</td>\n",
              "      <td>173</td>\n",
              "      <td>175</td>\n",
              "      <td>179</td>\n",
              "      <td>185</td>\n",
              "      <td>186</td>\n",
              "      <td>184</td>\n",
              "      <td>183</td>\n",
              "      <td>177</td>\n",
              "      <td>178</td>\n",
              "      <td>180</td>\n",
              "      <td>178</td>\n",
              "      <td>176</td>\n",
              "      <td>181</td>\n",
              "      <td>177</td>\n",
              "      <td>169</td>\n",
              "      <td>169</td>\n",
              "      <td>...</td>\n",
              "      <td>150</td>\n",
              "      <td>147</td>\n",
              "      <td>149</td>\n",
              "      <td>145</td>\n",
              "      <td>140</td>\n",
              "      <td>141</td>\n",
              "      <td>143</td>\n",
              "      <td>140</td>\n",
              "      <td>146</td>\n",
              "      <td>144</td>\n",
              "      <td>141</td>\n",
              "      <td>147</td>\n",
              "      <td>152</td>\n",
              "      <td>149</td>\n",
              "      <td>143</td>\n",
              "      <td>141</td>\n",
              "      <td>147</td>\n",
              "      <td>147</td>\n",
              "      <td>155</td>\n",
              "      <td>160</td>\n",
              "      <td>166</td>\n",
              "      <td>165</td>\n",
              "      <td>166</td>\n",
              "      <td>168</td>\n",
              "      <td>162</td>\n",
              "      <td>158</td>\n",
              "      <td>151</td>\n",
              "      <td>140</td>\n",
              "      <td>134</td>\n",
              "      <td>125</td>\n",
              "      <td>116</td>\n",
              "      <td>108</td>\n",
              "      <td>90</td>\n",
              "      <td>72</td>\n",
              "      <td>54</td>\n",
              "      <td>33</td>\n",
              "      <td>13</td>\n",
              "      <td>2</td>\n",
              "      <td>1</td>\n",
              "      <td>1</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>train2.jpg</th>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>...</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>train3.jpg</th>\n",
              "      <td>197</td>\n",
              "      <td>210</td>\n",
              "      <td>204</td>\n",
              "      <td>199</td>\n",
              "      <td>206</td>\n",
              "      <td>210</td>\n",
              "      <td>208</td>\n",
              "      <td>207</td>\n",
              "      <td>207</td>\n",
              "      <td>205</td>\n",
              "      <td>203</td>\n",
              "      <td>204</td>\n",
              "      <td>198</td>\n",
              "      <td>189</td>\n",
              "      <td>176</td>\n",
              "      <td>175</td>\n",
              "      <td>175</td>\n",
              "      <td>172</td>\n",
              "      <td>162</td>\n",
              "      <td>157</td>\n",
              "      <td>134</td>\n",
              "      <td>134</td>\n",
              "      <td>135</td>\n",
              "      <td>136</td>\n",
              "      <td>138</td>\n",
              "      <td>149</td>\n",
              "      <td>145</td>\n",
              "      <td>140</td>\n",
              "      <td>141</td>\n",
              "      <td>146</td>\n",
              "      <td>158</td>\n",
              "      <td>159</td>\n",
              "      <td>170</td>\n",
              "      <td>171</td>\n",
              "      <td>170</td>\n",
              "      <td>162</td>\n",
              "      <td>174</td>\n",
              "      <td>164</td>\n",
              "      <td>152</td>\n",
              "      <td>161</td>\n",
              "      <td>...</td>\n",
              "      <td>165</td>\n",
              "      <td>166</td>\n",
              "      <td>153</td>\n",
              "      <td>146</td>\n",
              "      <td>161</td>\n",
              "      <td>168</td>\n",
              "      <td>174</td>\n",
              "      <td>176</td>\n",
              "      <td>179</td>\n",
              "      <td>178</td>\n",
              "      <td>174</td>\n",
              "      <td>173</td>\n",
              "      <td>174</td>\n",
              "      <td>175</td>\n",
              "      <td>164</td>\n",
              "      <td>160</td>\n",
              "      <td>157</td>\n",
              "      <td>162</td>\n",
              "      <td>176</td>\n",
              "      <td>181</td>\n",
              "      <td>184</td>\n",
              "      <td>197</td>\n",
              "      <td>193</td>\n",
              "      <td>193</td>\n",
              "      <td>197</td>\n",
              "      <td>192</td>\n",
              "      <td>197</td>\n",
              "      <td>203</td>\n",
              "      <td>200</td>\n",
              "      <td>201</td>\n",
              "      <td>198</td>\n",
              "      <td>201</td>\n",
              "      <td>203</td>\n",
              "      <td>198</td>\n",
              "      <td>211</td>\n",
              "      <td>199</td>\n",
              "      <td>196</td>\n",
              "      <td>196</td>\n",
              "      <td>197</td>\n",
              "      <td>2</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>train4.jpg</th>\n",
              "      <td>128</td>\n",
              "      <td>119</td>\n",
              "      <td>133</td>\n",
              "      <td>115</td>\n",
              "      <td>109</td>\n",
              "      <td>123</td>\n",
              "      <td>138</td>\n",
              "      <td>131</td>\n",
              "      <td>143</td>\n",
              "      <td>133</td>\n",
              "      <td>133</td>\n",
              "      <td>130</td>\n",
              "      <td>140</td>\n",
              "      <td>138</td>\n",
              "      <td>137</td>\n",
              "      <td>135</td>\n",
              "      <td>138</td>\n",
              "      <td>141</td>\n",
              "      <td>134</td>\n",
              "      <td>128</td>\n",
              "      <td>125</td>\n",
              "      <td>128</td>\n",
              "      <td>98</td>\n",
              "      <td>118</td>\n",
              "      <td>112</td>\n",
              "      <td>116</td>\n",
              "      <td>116</td>\n",
              "      <td>115</td>\n",
              "      <td>121</td>\n",
              "      <td>117</td>\n",
              "      <td>112</td>\n",
              "      <td>118</td>\n",
              "      <td>142</td>\n",
              "      <td>122</td>\n",
              "      <td>118</td>\n",
              "      <td>111</td>\n",
              "      <td>92</td>\n",
              "      <td>94</td>\n",
              "      <td>103</td>\n",
              "      <td>110</td>\n",
              "      <td>...</td>\n",
              "      <td>169</td>\n",
              "      <td>167</td>\n",
              "      <td>163</td>\n",
              "      <td>164</td>\n",
              "      <td>173</td>\n",
              "      <td>168</td>\n",
              "      <td>167</td>\n",
              "      <td>156</td>\n",
              "      <td>146</td>\n",
              "      <td>156</td>\n",
              "      <td>154</td>\n",
              "      <td>135</td>\n",
              "      <td>129</td>\n",
              "      <td>149</td>\n",
              "      <td>146</td>\n",
              "      <td>150</td>\n",
              "      <td>152</td>\n",
              "      <td>142</td>\n",
              "      <td>138</td>\n",
              "      <td>141</td>\n",
              "      <td>141</td>\n",
              "      <td>130</td>\n",
              "      <td>130</td>\n",
              "      <td>120</td>\n",
              "      <td>130</td>\n",
              "      <td>110</td>\n",
              "      <td>117</td>\n",
              "      <td>117</td>\n",
              "      <td>129</td>\n",
              "      <td>121</td>\n",
              "      <td>116</td>\n",
              "      <td>120</td>\n",
              "      <td>126</td>\n",
              "      <td>119</td>\n",
              "      <td>129</td>\n",
              "      <td>132</td>\n",
              "      <td>134</td>\n",
              "      <td>131</td>\n",
              "      <td>123</td>\n",
              "      <td>1</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>...</th>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>train7691.jpg</th>\n",
              "      <td>192</td>\n",
              "      <td>189</td>\n",
              "      <td>187</td>\n",
              "      <td>188</td>\n",
              "      <td>193</td>\n",
              "      <td>193</td>\n",
              "      <td>192</td>\n",
              "      <td>193</td>\n",
              "      <td>193</td>\n",
              "      <td>192</td>\n",
              "      <td>191</td>\n",
              "      <td>193</td>\n",
              "      <td>196</td>\n",
              "      <td>196</td>\n",
              "      <td>190</td>\n",
              "      <td>188</td>\n",
              "      <td>187</td>\n",
              "      <td>183</td>\n",
              "      <td>176</td>\n",
              "      <td>174</td>\n",
              "      <td>178</td>\n",
              "      <td>179</td>\n",
              "      <td>180</td>\n",
              "      <td>179</td>\n",
              "      <td>182</td>\n",
              "      <td>183</td>\n",
              "      <td>178</td>\n",
              "      <td>180</td>\n",
              "      <td>180</td>\n",
              "      <td>184</td>\n",
              "      <td>183</td>\n",
              "      <td>180</td>\n",
              "      <td>183</td>\n",
              "      <td>183</td>\n",
              "      <td>181</td>\n",
              "      <td>184</td>\n",
              "      <td>180</td>\n",
              "      <td>180</td>\n",
              "      <td>182</td>\n",
              "      <td>181</td>\n",
              "      <td>...</td>\n",
              "      <td>167</td>\n",
              "      <td>162</td>\n",
              "      <td>161</td>\n",
              "      <td>154</td>\n",
              "      <td>155</td>\n",
              "      <td>157</td>\n",
              "      <td>159</td>\n",
              "      <td>159</td>\n",
              "      <td>155</td>\n",
              "      <td>161</td>\n",
              "      <td>157</td>\n",
              "      <td>153</td>\n",
              "      <td>149</td>\n",
              "      <td>148</td>\n",
              "      <td>144</td>\n",
              "      <td>146</td>\n",
              "      <td>146</td>\n",
              "      <td>147</td>\n",
              "      <td>156</td>\n",
              "      <td>165</td>\n",
              "      <td>168</td>\n",
              "      <td>175</td>\n",
              "      <td>173</td>\n",
              "      <td>174</td>\n",
              "      <td>174</td>\n",
              "      <td>176</td>\n",
              "      <td>175</td>\n",
              "      <td>180</td>\n",
              "      <td>179</td>\n",
              "      <td>178</td>\n",
              "      <td>179</td>\n",
              "      <td>181</td>\n",
              "      <td>179</td>\n",
              "      <td>176</td>\n",
              "      <td>177</td>\n",
              "      <td>177</td>\n",
              "      <td>180</td>\n",
              "      <td>181</td>\n",
              "      <td>181</td>\n",
              "      <td>4</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>train7692.jpg</th>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>1</td>\n",
              "      <td>2</td>\n",
              "      <td>1</td>\n",
              "      <td>2</td>\n",
              "      <td>2</td>\n",
              "      <td>2</td>\n",
              "      <td>2</td>\n",
              "      <td>2</td>\n",
              "      <td>2</td>\n",
              "      <td>3</td>\n",
              "      <td>4</td>\n",
              "      <td>7</td>\n",
              "      <td>10</td>\n",
              "      <td>13</td>\n",
              "      <td>15</td>\n",
              "      <td>16</td>\n",
              "      <td>17</td>\n",
              "      <td>17</td>\n",
              "      <td>17</td>\n",
              "      <td>16</td>\n",
              "      <td>14</td>\n",
              "      <td>11</td>\n",
              "      <td>8</td>\n",
              "      <td>5</td>\n",
              "      <td>2</td>\n",
              "      <td>2</td>\n",
              "      <td>2</td>\n",
              "      <td>2</td>\n",
              "      <td>2</td>\n",
              "      <td>2</td>\n",
              "      <td>...</td>\n",
              "      <td>8</td>\n",
              "      <td>16</td>\n",
              "      <td>23</td>\n",
              "      <td>29</td>\n",
              "      <td>36</td>\n",
              "      <td>42</td>\n",
              "      <td>48</td>\n",
              "      <td>52</td>\n",
              "      <td>55</td>\n",
              "      <td>57</td>\n",
              "      <td>60</td>\n",
              "      <td>59</td>\n",
              "      <td>54</td>\n",
              "      <td>47</td>\n",
              "      <td>40</td>\n",
              "      <td>34</td>\n",
              "      <td>27</td>\n",
              "      <td>20</td>\n",
              "      <td>11</td>\n",
              "      <td>6</td>\n",
              "      <td>1</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>3</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>train7693.jpg</th>\n",
              "      <td>96</td>\n",
              "      <td>97</td>\n",
              "      <td>100</td>\n",
              "      <td>105</td>\n",
              "      <td>110</td>\n",
              "      <td>114</td>\n",
              "      <td>114</td>\n",
              "      <td>112</td>\n",
              "      <td>113</td>\n",
              "      <td>119</td>\n",
              "      <td>124</td>\n",
              "      <td>118</td>\n",
              "      <td>118</td>\n",
              "      <td>120</td>\n",
              "      <td>121</td>\n",
              "      <td>122</td>\n",
              "      <td>120</td>\n",
              "      <td>116</td>\n",
              "      <td>116</td>\n",
              "      <td>121</td>\n",
              "      <td>123</td>\n",
              "      <td>125</td>\n",
              "      <td>130</td>\n",
              "      <td>124</td>\n",
              "      <td>133</td>\n",
              "      <td>124</td>\n",
              "      <td>109</td>\n",
              "      <td>123</td>\n",
              "      <td>130</td>\n",
              "      <td>133</td>\n",
              "      <td>136</td>\n",
              "      <td>131</td>\n",
              "      <td>134</td>\n",
              "      <td>137</td>\n",
              "      <td>138</td>\n",
              "      <td>146</td>\n",
              "      <td>139</td>\n",
              "      <td>145</td>\n",
              "      <td>142</td>\n",
              "      <td>139</td>\n",
              "      <td>...</td>\n",
              "      <td>141</td>\n",
              "      <td>140</td>\n",
              "      <td>146</td>\n",
              "      <td>147</td>\n",
              "      <td>150</td>\n",
              "      <td>159</td>\n",
              "      <td>151</td>\n",
              "      <td>146</td>\n",
              "      <td>126</td>\n",
              "      <td>106</td>\n",
              "      <td>139</td>\n",
              "      <td>143</td>\n",
              "      <td>161</td>\n",
              "      <td>156</td>\n",
              "      <td>164</td>\n",
              "      <td>159</td>\n",
              "      <td>173</td>\n",
              "      <td>176</td>\n",
              "      <td>172</td>\n",
              "      <td>167</td>\n",
              "      <td>173</td>\n",
              "      <td>170</td>\n",
              "      <td>182</td>\n",
              "      <td>165</td>\n",
              "      <td>185</td>\n",
              "      <td>169</td>\n",
              "      <td>168</td>\n",
              "      <td>170</td>\n",
              "      <td>164</td>\n",
              "      <td>165</td>\n",
              "      <td>166</td>\n",
              "      <td>187</td>\n",
              "      <td>185</td>\n",
              "      <td>193</td>\n",
              "      <td>163</td>\n",
              "      <td>188</td>\n",
              "      <td>189</td>\n",
              "      <td>188</td>\n",
              "      <td>170</td>\n",
              "      <td>4</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>train7694.jpg</th>\n",
              "      <td>116</td>\n",
              "      <td>98</td>\n",
              "      <td>142</td>\n",
              "      <td>158</td>\n",
              "      <td>168</td>\n",
              "      <td>162</td>\n",
              "      <td>156</td>\n",
              "      <td>155</td>\n",
              "      <td>157</td>\n",
              "      <td>160</td>\n",
              "      <td>153</td>\n",
              "      <td>147</td>\n",
              "      <td>142</td>\n",
              "      <td>143</td>\n",
              "      <td>142</td>\n",
              "      <td>150</td>\n",
              "      <td>151</td>\n",
              "      <td>161</td>\n",
              "      <td>167</td>\n",
              "      <td>201</td>\n",
              "      <td>172</td>\n",
              "      <td>169</td>\n",
              "      <td>167</td>\n",
              "      <td>172</td>\n",
              "      <td>173</td>\n",
              "      <td>173</td>\n",
              "      <td>170</td>\n",
              "      <td>168</td>\n",
              "      <td>171</td>\n",
              "      <td>146</td>\n",
              "      <td>171</td>\n",
              "      <td>169</td>\n",
              "      <td>164</td>\n",
              "      <td>144</td>\n",
              "      <td>133</td>\n",
              "      <td>137</td>\n",
              "      <td>162</td>\n",
              "      <td>163</td>\n",
              "      <td>155</td>\n",
              "      <td>144</td>\n",
              "      <td>...</td>\n",
              "      <td>153</td>\n",
              "      <td>149</td>\n",
              "      <td>151</td>\n",
              "      <td>144</td>\n",
              "      <td>167</td>\n",
              "      <td>168</td>\n",
              "      <td>171</td>\n",
              "      <td>175</td>\n",
              "      <td>169</td>\n",
              "      <td>163</td>\n",
              "      <td>169</td>\n",
              "      <td>188</td>\n",
              "      <td>159</td>\n",
              "      <td>152</td>\n",
              "      <td>152</td>\n",
              "      <td>153</td>\n",
              "      <td>156</td>\n",
              "      <td>154</td>\n",
              "      <td>148</td>\n",
              "      <td>147</td>\n",
              "      <td>157</td>\n",
              "      <td>168</td>\n",
              "      <td>175</td>\n",
              "      <td>175</td>\n",
              "      <td>163</td>\n",
              "      <td>149</td>\n",
              "      <td>166</td>\n",
              "      <td>179</td>\n",
              "      <td>188</td>\n",
              "      <td>177</td>\n",
              "      <td>179</td>\n",
              "      <td>172</td>\n",
              "      <td>160</td>\n",
              "      <td>175</td>\n",
              "      <td>161</td>\n",
              "      <td>151</td>\n",
              "      <td>161</td>\n",
              "      <td>170</td>\n",
              "      <td>154</td>\n",
              "      <td>5</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>train7695.jpg</th>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>2</td>\n",
              "      <td>2</td>\n",
              "      <td>2</td>\n",
              "      <td>2</td>\n",
              "      <td>2</td>\n",
              "      <td>3</td>\n",
              "      <td>4</td>\n",
              "      <td>19</td>\n",
              "      <td>38</td>\n",
              "      <td>56</td>\n",
              "      <td>70</td>\n",
              "      <td>85</td>\n",
              "      <td>96</td>\n",
              "      <td>107</td>\n",
              "      <td>115</td>\n",
              "      <td>123</td>\n",
              "      <td>125</td>\n",
              "      <td>130</td>\n",
              "      <td>132</td>\n",
              "      <td>135</td>\n",
              "      <td>135</td>\n",
              "      <td>135</td>\n",
              "      <td>139</td>\n",
              "      <td>140</td>\n",
              "      <td>138</td>\n",
              "      <td>137</td>\n",
              "      <td>135</td>\n",
              "      <td>133</td>\n",
              "      <td>130</td>\n",
              "      <td>127</td>\n",
              "      <td>125</td>\n",
              "      <td>120</td>\n",
              "      <td>114</td>\n",
              "      <td>104</td>\n",
              "      <td>93</td>\n",
              "      <td>80</td>\n",
              "      <td>...</td>\n",
              "      <td>151</td>\n",
              "      <td>154</td>\n",
              "      <td>158</td>\n",
              "      <td>159</td>\n",
              "      <td>161</td>\n",
              "      <td>161</td>\n",
              "      <td>160</td>\n",
              "      <td>161</td>\n",
              "      <td>163</td>\n",
              "      <td>163</td>\n",
              "      <td>162</td>\n",
              "      <td>162</td>\n",
              "      <td>162</td>\n",
              "      <td>162</td>\n",
              "      <td>160</td>\n",
              "      <td>158</td>\n",
              "      <td>156</td>\n",
              "      <td>153</td>\n",
              "      <td>151</td>\n",
              "      <td>147</td>\n",
              "      <td>143</td>\n",
              "      <td>138</td>\n",
              "      <td>133</td>\n",
              "      <td>127</td>\n",
              "      <td>119</td>\n",
              "      <td>107</td>\n",
              "      <td>93</td>\n",
              "      <td>74</td>\n",
              "      <td>55</td>\n",
              "      <td>30</td>\n",
              "      <td>9</td>\n",
              "      <td>2</td>\n",
              "      <td>2</td>\n",
              "      <td>2</td>\n",
              "      <td>1</td>\n",
              "      <td>1</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "<p>7696 rows × 3137 columns</p>\n",
              "</div>"
            ],
            "text/plain": [
              "                 0    1    2    3    4  ...  3132  3133  3134  3135  label\n",
              "image                                   ...                               \n",
              "train0.jpg     165  166  174  174  175  ...    69    79    90    78      0\n",
              "train1.jpg      27   44   61   78   96  ...    33    13     2     1      1\n",
              "train2.jpg       0    0    0    0    0  ...     0     0     0     0      1\n",
              "train3.jpg     197  210  204  199  206  ...   199   196   196   197      2\n",
              "train4.jpg     128  119  133  115  109  ...   132   134   131   123      1\n",
              "...            ...  ...  ...  ...  ...  ...   ...   ...   ...   ...    ...\n",
              "train7691.jpg  192  189  187  188  193  ...   177   180   181   181      4\n",
              "train7692.jpg    0    0    0    0    0  ...     0     0     0     0      3\n",
              "train7693.jpg   96   97  100  105  110  ...   188   189   188   170      4\n",
              "train7694.jpg  116   98  142  158  168  ...   151   161   170   154      5\n",
              "train7695.jpg    0    0    0    1    2  ...     1     1     0     0      1\n",
              "\n",
              "[7696 rows x 3137 columns]"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 6
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "mI2aTsIydoJ7",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "for i in range(23):\n",
        "    po=po.append({'current':df.at[i,\"Current 2\"],'load':df.at[i,\"P_L 2\"],'result':2,'Time':df.at[i,\"Time\"]},ignore_index=True)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "6UzQk6EOdq3Q",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "for i in range(23):\n",
        "    po=po.append({'current':df.at[i,\"Current 3\"],'load':df.at[i,\"P_L 3\"],'result':3,'Time':df.at[i,\"Time\"]},ignore_index=True)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "DjyG5rm2dz2m",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 34
        },
        "outputId": "4ba00cec-1721-4da0-e0f4-09f6e2a0878a"
      },
      "source": [
        "for i in range(23):\n",
        "    po=po.append({'current':df.at[i,\"Current Ideal\"],'load':df.at[i,\"P_L Ideal\"],'result':0,'Time':df.at[i,\"Time\"]},ignore_index=True)"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Found 8490 images belonging to 7 classes.\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "r-5cNtPCd2YG",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 122
        },
        "outputId": "8ad1e5ba-02c1-4bb2-b69e-93516aaabf3a"
      },
      "source": [
        "po"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/ops/resource_variable_ops.py:1630: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.\n",
            "Instructions for updating:\n",
            "If using Keras pass *_constraint arguments to layers.\n",
            "Downloading data from https://github.com/fchollet/deep-learning-models/releases/download/v0.6/mobilenet_1_0_224_tf.h5\n",
            "17227776/17225924 [==============================] - 3s 0us/step\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "t00qelT1d6lX",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "po = pd.concat([po,pd.get_dummies(po['Time'], prefix='Time',dummy_na=True)],axis=1).drop(['Time'],axis=1)\n"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "GtP2JRm5eBDI",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "po"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "JU9SttS7eC1y",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "poo=po.values"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "6YoYMY0heEkG",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "yy=poo[:,2]\n",
        "po.drop(['result'],axis=\"columns\",inplace=True)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "xQnkBOb_eGou",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 360
        },
        "outputId": "788eb09f-38c6-4068-e3a0-bcf76239f1ea"
      },
      "source": [
        "XX=poo[:,:]\n"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Epoch 1/30\n",
            "119/770 [===>..........................] - ETA: 42:32 - loss: 2.5548 - acc: 0.3437"
          ],
          "name": "stdout"
        },
        {
          "output_type": "error",
          "ename": "KeyboardInterrupt",
          "evalue": "ignored",
          "traceback": [
            "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
            "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
            "\u001b[0;32m<ipython-input-15-ae4fde9f8cf5>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mhistory\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit_generator\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_batches\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msteps_per_epoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtrain_steps\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mclass_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mclass_weight\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mepochs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m30\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
            "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training.py\u001b[0m in \u001b[0;36mfit_generator\u001b[0;34m(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, validation_freq, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)\u001b[0m\n\u001b[1;32m   1294\u001b[0m         \u001b[0mshuffle\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mshuffle\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1295\u001b[0m         \u001b[0minitial_epoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minitial_epoch\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1296\u001b[0;31m         steps_name='steps_per_epoch')\n\u001b[0m\u001b[1;32m   1297\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1298\u001b[0m   def evaluate_generator(self,\n",
            "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training_generator.py\u001b[0m in \u001b[0;36mmodel_iteration\u001b[0;34m(model, data, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, validation_freq, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch, mode, batch_size, steps_name, **kwargs)\u001b[0m\n\u001b[1;32m    219\u001b[0m     \u001b[0mstep\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    220\u001b[0m     \u001b[0;32mwhile\u001b[0m \u001b[0mstep\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0mtarget_steps\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 221\u001b[0;31m       \u001b[0mbatch_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_get_next_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgenerator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    222\u001b[0m       \u001b[0;32mif\u001b[0m \u001b[0mbatch_data\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    223\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0mis_dataset\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training_generator.py\u001b[0m in \u001b[0;36m_get_next_batch\u001b[0;34m(generator)\u001b[0m\n\u001b[1;32m    361\u001b[0m   \u001b[0;34m\"\"\"Retrieves the next batch of input data.\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    362\u001b[0m   \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 363\u001b[0;31m     \u001b[0mgenerator_output\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgenerator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    364\u001b[0m   \u001b[0;32mexcept\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mStopIteration\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mOutOfRangeError\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    365\u001b[0m     \u001b[0;32mreturn\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/utils/data_utils.py\u001b[0m in \u001b[0;36mget\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    781\u001b[0m     \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    782\u001b[0m       \u001b[0;32mwhile\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_running\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 783\u001b[0;31m         \u001b[0minputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mqueue\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mblock\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    784\u001b[0m         \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mqueue\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtask_done\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    785\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0minputs\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/lib/python3.6/multiprocessing/pool.py\u001b[0m in \u001b[0;36mget\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m    636\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    637\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 638\u001b[0;31m         \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    639\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mready\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    640\u001b[0m             \u001b[0;32mraise\u001b[0m \u001b[0mTimeoutError\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/lib/python3.6/multiprocessing/pool.py\u001b[0m in \u001b[0;36mwait\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m    633\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    634\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0mwait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 635\u001b[0;31m         \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_event\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    636\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    637\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/lib/python3.6/threading.py\u001b[0m in \u001b[0;36mwait\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m    549\u001b[0m             \u001b[0msignaled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_flag\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    550\u001b[0m             \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0msignaled\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 551\u001b[0;31m                 \u001b[0msignaled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_cond\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    552\u001b[0m             \u001b[0;32mreturn\u001b[0m \u001b[0msignaled\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    553\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/lib/python3.6/threading.py\u001b[0m in \u001b[0;36mwait\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m    293\u001b[0m         \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m    \u001b[0;31m# restore state no matter what (e.g., KeyboardInterrupt)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    294\u001b[0m             \u001b[0;32mif\u001b[0m \u001b[0mtimeout\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 295\u001b[0;31m                 \u001b[0mwaiter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0macquire\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    296\u001b[0m                 \u001b[0mgotit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    297\u001b[0m             \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "LP99lYcEeIhq",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "def neural_net():\n",
        "    model = Sequential()\n",
        "    model.add(Dense(16, input_dim=27, kernel_initializer='normal', activation='relu'))\n",
        "    model.add(Dropout(0.2))\n",
        "    model.add(Dense(8, kernel_initializer='normal', activation='relu'))\n",
        "    model.add(Dense(4, kernel_initializer='normal',activation='softmax'))\n",
        "    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])\n",
        "    return model"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "hZb562n-yJzJ",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "from keras.utils import np_utils"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "aVL4rZZDyeuy",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "encoder = LabelEncoder()\n",
        "encoder.fit(yy)\n",
        "encoded_Y = encoder.transform(yy)\n",
        "dummy_y = np_utils.to_categorical(encoded_Y)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "S9LaHICzygN1",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "dummy_y"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "i0oRbw7uyh8N",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "dummy_XX=XX"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "tLdxBr17ylks",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "scaler=StandardScaler()"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "XLkUP8O-ypti",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "dummy_XX=scaler.fit_transform(dummy_XX)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "EQCCA6QkyrvO",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "dummy_XX"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "w-snfrWbytzP",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "mm=neural_net()\n",
        "history=mm.fit(XX,dummy_y,epochs=500)"
      ],
      "execution_count": null,
      "outputs": []
    }
  ]
}



版权声明:本文为ncusz原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。