Description
      Given a sequence a[1],a[2],a[3]……a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
      
     
Input
      The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
      
     
Output
      For each test case, you should output two lines. The first line is “Case #:”, # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
      
     
Sample Input
    
    
     
     2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5 
    
    
Sample Output
    
    
     
     Case 1:
14 1 4
Case 2:
7 1 6 
    
    
    
     
      题意:仍旧是最大连续子序列和;
     
    
   
    
     
      注意输出格式就行;
     
    
   
    
     
      AC代码:
     
    
   
    
     
     
    
   
#include <bits/stdc++.h>
#define ll long long
using namespace std ;
int main()
{
    int l , r , maxi , temp , now  ;
    int p1,  p2 ;
    int t ;
    cin>> t ;
    for(int cas = 1 ; cas <=t ; cas++)
    {
        int n ;
        cin>>n>>temp ;
        now=maxi=temp;
        r=l=p1=p2=1;
        for(int i=2; i<=n; i++)
        {
            cin>>temp;
            if(temp>now+temp)
            {
                now=temp;
                p1=i;
            }
            else
            {
                now+=temp;
            }
            if(now>maxi)
            {
                l=p1;
                r=i;
                maxi=now;
            }
        }
        printf("Case %d:\n",cas);
        printf("%d %d %d\n",maxi , l , r);
        if(cas!=t)
            printf("\n");
    }
    return 0 ;
}
 
版权声明:本文为qq_33638791原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
