C#产生正态分布、泊松分布、指数分布、负指数分布随机数(原创)

  • Post author:
  • Post category:其他


http://blog.sina.com.cn/s/blog_76c31b8e0100qskf.html

在编程过程中,由于数据仿真模拟的需要,我们经常需要产生一些随机数,在C#中,产生一般随机数用Random即可,但是,若要产生服从特定分布的随机数,就需要一定的算法来支持了,为了方便广大编程人员,我将我再做项目过程中用到的产生服从正态分布、泊松分布、指数分布以及负指数分布随机数的方法与大家共享,希望会有所帮助!

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.IO;

namespace PZ

{





class Model




{









/// <summary>








/// 正态分布随机数








/// </summary>








const int N = 100;








const int MAX = 50;








const double MIN = 0.1;








const int MIU = 40;








const int SIGMA = 1;








static Random aa = new Random((int)(DateTime.Now.Ticks / 10000));








public double AverageRandom(double min, double max)//产生(min,max)之间均匀分布的随机数








{













int MINnteger = (int)(min * 10000);












int MAXnteger = (int)(max * 10000);












int resultInteger = aa.Next(MINnteger, MAXnteger);












return resultInteger / 10000.0;








}








public double Normal(double x, double miu, double sigma) //正态分布概率密度函数








{













return 1.0 / (x * Math.Sqrt(2 * Math.PI) * sigma) * Math.Exp(-1 * (Math.Log(x) – miu) * (Math.Log(x) – miu) / (2 * sigma * sigma));








}








public double Random_Normal(double miu, double sigma, double min, double max)//产生正态分布随机数








{













double x;












double dScope;












double y;












do












{

















x = AverageRandom(min, max);
















y = Normal(x, miu, sigma);
















dScope = AverageRandom(0, Normal(miu, miu, sigma));












} while (dScope > y);












return x;








}









/// <summary>








/// 指数分布随机数








/// </summary>








/// <param name=”const_a”></param>








/// <returns></returns>








public

double RandExp(double const_a)//const_a是指数分布的参数λ








{













Random rand = new Random(Guid.NewGuid().GetHashCode());












double p;












double temp;












if (const_a != 0)
















temp = 1 / const_a;












else
















throw new System.InvalidOperationExceptio

n(“除数不能为零!不能产生参数为零的指数分布!”);












double randres;












while (true) //用于产生随机的密度,保证比参数λ小












{

















p = rand.NextDouble();
















if (p < const_a)




















break;












}












randres = -temp * Math.Log(temp * p, Math.E);












return randres;








}








/// <summary>








/// 负指数分布随机数产生








/// </summary>








/// <param name=”lam”>参数</param>








/// <returns></returns>








Random ran;








public Model()








{













ran = new Random();








}








public double ngtIndex(double lam)








{













double dec = ran.NextDouble();












while (dec == 0)
















dec = ran.NextDouble();












return -Math.Log(dec) / lam;








}








/// <summary>








/// 泊松分布产生








/// </summary>








/// <param name=”lam”>参数</param>








/// <param name=”time”>时间</param>








/// <returns></returns>








public double poisson(double lam, double time)








{













int count = 0;












while (true)












{

















time -= ngtIndex(lam);
















if (time > 0)




















count++;
















else




















break;












}












return count;








}










}




}

实现后的界面截图如下:


C#产生正态分布、泊松分布、指数分布、负指数分布随机数(原创)