Tqdm模块——进度条配置
from time import sleep
from tqdm import tqdm
for i in tqdm(range(1000)):
sleep(0.01)
在模型训练时的应用
dataloader的使用:
for data, target in tqdm(train_loader):
epochs = 10
for epoch in range(epochs):
# train
net.train() # net.train() net.eval() 来管理dropout、BN层方法(关闭梯度)
running_loss = 0.0
# ------------------------------------------------------------
train_bar = tqdm(train_loader, file=sys.stdout)
for step, data in enumerate(train_bar):
images, labels = data
optimizer.zero_grad()
outputs = net(images.to(device))
loss = loss_function(outputs, labels.to(device))
loss.backward()
optimizer.step()
# ----------------------------------------------------------------------
# print statistics
running_loss += loss.item()
train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
epochs,
loss)
版权声明:本文为qq_42958831原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。