什么是回环检测?
回环检测(Loop Closure Detection),视觉SLAM问题中,位姿的估计往往是一个递推的过程,即由上一帧位姿解算当前帧位姿,因此其中的误差便这样一帧一帧的传递下去,也就是我们所说的累计误差。我们之所以用前一帧递推下一帧位姿,因为这两帧足够近,肯定可以建立两帧的约束,但是距离较远的两帧就不一定可以建立这样的约束关系了。找出可以建立这种位姿约束的历史帧,就是回环检测。
回环检测的意义?
有了前端的视觉里程计及后端优化的SLAM系统,似乎已经比较好用了。但其在提高实时性的同时精度却降低了,一旦精度降低,又会面临长时间累计误差的问题,特别是像ORB-SLAM那样只做局部地图优化的方案。我们该如何平衡这个矛盾呢?人可以通过面前看到的景象与脑海中残缺的印象来对比从而检测到回环的,对于SLAM来说也可以通过对比当前帧与过去关键帧的相似度,如相似度超过某一阀值时就可以被认为是检测到回环。
1.词袋模型
词袋模型就是把特征看成是一个个单词,通过比较两张图片中单词的一致性,来判断两张图片是否属于同一场景。
为了能够把特征归类为单词,我们需要训练一个字典。所谓的字典就是包含了所有可能的单词的集合,为了提高通用性,需要使用海量的数据训练。
字典的训练其实是一个聚类的过程。假设所有图片中共提取了10,000,000个特征,可以使用K-means方法把它们聚成100,000个单词。但是,如果只是用这100,000个单词来匹配的话效率还是太低,因为每个特征需要比较100,000次才能找到自己对应的单词。为了提高效率,字典在训练的过程中构建了一个k个分支,深度为d的树,上层结点提供了粗分类,下层结点提供了细分类,直到叶子结点。利用这个树,就可以将时间复杂度降低到对数级别,大大加速了特征匹配。
2.基于CNN的回环检测
利用卷积神经网络可以检测出关键帧深层特征,通过比较这些图像深层特征的相似度可以判别出是否产生了回环,有更高的鲁棒性,这一技术还在发展。
3.自编码网络的回环检测
还在摸索。。。。
转载于:https://www.cnblogs.com/hangzhoudianziuniversity/p/11486897.html