前几天读了Deep Fill V2论文地址
Generative Image Inpainting with Contextual Attention)
,跑其代码时,代码地址:
TF版Deep Fill V2
,
PyTorch版Deep Fill V2
,对掩码生成这一部分很有兴趣,于是写了一个自定义生成不规则掩码msk,然后结合Deep Fill V2进行图像的修复。
# -*- coding: utf-8 -*-
import cv2
import numpy as np
lsPointsChoose = []
tpPointsChoose = []
pointsCount = 0
count = 0
pointsMax = 10
def on_mouse(event, x, y, flags, param):
global img, point1, point2, count, pointsMax
global lsPointsChoose, tpPointsChoose # 存入选择的点
global pointsCount # 对鼠标按下的点计数
global img2, ROI_bymouse_flag
img2 = img.copy() # 此行代码保证每次都重新再原图画 避免画多了
if event == cv2.EVENT_LBUTTONDOWN: # 左键点击
pointsCount = pointsCount + 1
print('pointsCount:', pointsCount)
point1 = (x, y)
print(x, y)
cv2.circle(img2, point1, 10, (0, 255, 0), 2)
lsPointsChoose.append([x, y]) # 用于转化为darry 提取多边形ROI
tpPointsChoose.append((x, y)) # 用于画点
print(len(tpPointsChoose))
for i in range(len(tpPointsChoose) - 1):
print('i', i)
cv2.line(img2, tpPointsChoose[i], tpPointsChoose[i + 1], (0, 0, 255), 2)
# 绘制区域
if (pointsCount == pointsMax):
ROI_byMouse()
ROI_bymouse_flag = 1
lsPointsChoose = []
cv2.imshow('src', img2)
if event == cv2.EVENT_RBUTTONDOWN:
print("right-mouse")
pointsCount = 0
tpPointsChoose = []
lsPointsChoose = []
print(len(tpPointsChoose))
for i in range(len(tpPointsChoose) - 1):
print('i', i)
cv2.line(img2, tpPointsChoose[i], tpPointsChoose[i + 1], (0, 0, 255), 2)
cv2.imshow('src', img2)
def ROI_byMouse():
global src, ROI, ROI_flag, mask2
mask = np.zeros(img.shape, np.uint8)
pts = np.array([lsPointsChoose], np.int32)
pts = pts.reshape((-1, 1, 2))
mask = cv2.polylines(mask, [pts], True, (255, 255, 255))
# 绘制多边形
mask2 = cv2.fillPoly(mask, [pts], (255, 255, 255))
cv2.imshow('mask', mask2)
cv2.imwrite('test_data_mask/8.png', mask2)
ROI = cv2.bitwise_and(mask2, img)
# 输入测试图像
img = cv2.imread(r'D:\project\DeepFillv2_Pytorch-master\test_data\8.png')
ROI = img.copy()
cv2.namedWindow('src')
cv2.setMouseCallback('src', on_mouse)
cv2.imshow('src', img)
cv2.waitKey(0)
测试:
生成的黑白掩码如下:
结合DeepFill V2修复网络,生成图像如下:
使用的预训练权重是batchsize4-epoch40的训练权重,所以对于生成大幅掩码后修复的效果可能不是那么好,对于小区域修复已经足够了,如下:
参考链接
Generative Image Inpainting with Contextual Attention)
TF版Deep Fill V2
PyTorch版Deep Fill V2
版权声明:本文为liuzi_hang原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。