CUDA:simpleMPI

  • Post author:
  • Post category:其他


Sample: simpleMPI

Minimum spec: SM 3.0

Simple example demonstrating how to use MPI in combination with CUDA.

Key concepts:

CUDA Systems Integration

MPI

Multithreading

simpleMPI.h

/*
 * Copyright 1993-2015 NVIDIA Corporation.  All rights reserved.
 *
 * Please refer to the NVIDIA end user license agreement (EULA) associated
 * with this source code for terms and conditions that govern your use of
 * this software. Any use, reproduction, disclosure, or distribution of
 * this software and related documentation outside the terms of the EULA
 * is strictly prohibited.
 *
 */

/* Simple example demonstrating how to use MPI with CUDA
*
*  Generate some random numbers on one node.
*  Dispatch them to all nodes.
*  Compute their square root on each node's GPU.
*  Compute the average of the results using MPI.
*
*  simpleMPI.h: common header file
*/

// Forward declarations
extern "C" {
    void initData(float *data, int dataSize);
    void computeGPU(float *hostData, int blockSize, int gridSize);
    float sum(float *data, int size);
    void my_abort(int err);
}

simpleMPI.cu

/*
 * Copyright 1993-2015 NVIDIA Corporation.  All rights reserved.
 *
 * Please refer to the NVIDIA end user license agreement (EULA) associated
 * with this source code for terms and conditions that govern your use of
 * this software. Any use, reproduction, disclosure, or distribution of
 * this software and related documentation outside the terms of the EULA
 * is strictly prohibited.
 *
 */


/* Simple example demonstrating how to use MPI with CUDA
*
*  Generate some random numbers on one node.
*  Dispatch them to all nodes.
*  Compute their square root on each node's GPU.
*  Compute the average of the results using MPI.
*
*  simpleMPI.cu: GPU part, compiled with nvcc
*/

#include <iostream>
using std::cerr;
using std::endl;

#include "simpleMPI.h"

// Error handling macro
#define CUDA_CHECK(call) \
    if((call) != cudaSuccess) { \
        cudaError_t err = cudaGetLastError(); \
        cerr << "CUDA error calling \""#call"\", code is " << err << endl; \
        my_abort(err); }


// Device code
// Very simple GPU Kernel that computes square roots of input numbers
__global__ void simpleMPIKernel(float *input, float *output)
{
    int tid = blockIdx.x * blockDim.x + threadIdx.x;
    output[tid] = sqrt(input[tid]);
}


// Initialize an array with random data (between 0 and 1)
void initData(float *data, int dataSize)
{
    for (int i = 0; i < dataSize; i++)
    {
        data[i] = (float)rand() / RAND_MAX;
    }
}

// CUDA computation on each node
// No MPI here, only CUDA
void computeGPU(float *hostData, int blockSize, int gridSize)
{
    int dataSize = blockSize * gridSize;

    // Allocate data on GPU memory
    float *deviceInputData = NULL;
    CUDA_CHECK(cudaMalloc((void **)&deviceInputData, dataSize * sizeof(float)));

    float *deviceOutputData = NULL;
    CUDA_CHECK(cudaMalloc((void **)&deviceOutputData, dataSize * sizeof(float)));

    // Copy to GPU memory
    CUDA_CHECK(cudaMemcpy(deviceInputData, hostData, dataSize * sizeof(float), cudaMemcpyHostToDevice));

    // Run kernel
    simpleMPIKernel<<<gridSize, blockSize>>>(deviceInputData, deviceOutputData);

    // Copy data back to CPU memory
    CUDA_CHECK(cudaMemcpy(hostData, deviceOutputData, dataSize *sizeof(float), cudaMemcpyDeviceToHost));

    // Free GPU memory
    CUDA_CHECK(cudaFree(deviceInputData));
    CUDA_CHECK(cudaFree(deviceOutputData));
}

float sum(float *data, int size)
{
    float accum = 0.f;

    for (int i = 0; i < size; i++)
    {
        accum += data[i];
    }

    return accum;
}

simpleMPI.cpp

/*
 * Copyright 1993-2015 NVIDIA Corporation.  All rights reserved.
 *
 * Please refer to the NVIDIA end user license agreement (EULA) associated
 * with this source code for terms and conditions that govern your use of
 * this software. Any use, reproduction, disclosure, or distribution of
 * this software and related documentation outside the terms of the EULA
 * is strictly prohibited.
 *
 */


/* Simple example demonstrating how to use MPI with CUDA
*
*  Generate some random numbers on one node.
*  Dispatch them to all nodes.
*  Compute their square root on each node's GPU.
*  Compute the average of the results using MPI.
*
*  simpleMPI.cpp: main program, compiled with mpicxx on linux/Mac platforms
*                 on Windows, please download the Microsoft HPC Pack SDK 2008
*/

// MPI include
#include <mpi.h>

// System includes
#include <iostream>

using std::cout;
using std::cerr;
using std::endl;

// User include
#include "simpleMPI.h"

// Error handling macros
#define MPI_CHECK(call) \
    if((call) != MPI_SUCCESS) { \
        cerr << "MPI error calling \""#call"\"\n"; \
        my_abort(-1); }


// Host code
// No CUDA here, only MPI
int main(int argc, char *argv[])
{
    // Dimensions of the dataset
    int blockSize = 256;
    int gridSize = 10000;
    int dataSizePerNode = gridSize * blockSize;

    // Initialize MPI state
    MPI_CHECK(MPI_Init(&argc, &argv));

    // Get our MPI node number and node count
    int commSize, commRank;
    MPI_CHECK(MPI_Comm_size(MPI_COMM_WORLD, &commSize));
    MPI_CHECK(MPI_Comm_rank(MPI_COMM_WORLD, &commRank));

    // Generate some random numbers on the root node (node 0)
    int dataSizeTotal = dataSizePerNode * commSize;
    float *dataRoot = NULL;

    if (commRank == 0)  // Are we the root node?
    {
        cout << "Running on " << commSize << " nodes" << endl;
        dataRoot = new float[dataSizeTotal];
        initData(dataRoot, dataSizeTotal);
    }

    // Allocate a buffer on each node
    float *dataNode = new float[dataSizePerNode];

    // Dispatch a portion of the input data to each node
    MPI_CHECK(MPI_Scatter(dataRoot,
                          dataSizePerNode,
                          MPI_FLOAT,
                          dataNode,
                          dataSizePerNode,
                          MPI_FLOAT,
                          0,
                          MPI_COMM_WORLD));

    if (commRank == 0)
    {
        // No need for root data any more
        delete [] dataRoot;
    }

    // On each node, run computation on GPU
    computeGPU(dataNode, blockSize, gridSize);

    // Reduction to the root node, computing the sum of output elements
    float sumNode = sum(dataNode, dataSizePerNode);
    float sumRoot;

    MPI_CHECK(MPI_Reduce(&sumNode, &sumRoot, 1, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD));

    if (commRank == 0)
    {
        float average = sumRoot / dataSizeTotal;
        cout << "Average of square roots is: " << average << endl;
    }

    // Cleanup
    delete [] dataNode;
    MPI_CHECK(MPI_Finalize());

    if (commRank == 0)
    {
        cout << "PASSED\n";
    }

    return 0;
}

// Shut down MPI cleanly if something goes wrong
void my_abort(int err)
{
    cout << "Test FAILED\n";
    MPI_Abort(MPI_COMM_WORLD, err);
}



版权声明:本文为lixiaoguang20原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。