【归档】R到R的周期函数构成的集合是R^R的子空间吗?

  • Post author:
  • Post category:其他


Note: 旧的wordpress博客弃用,于是将以前的笔记搬运回来。


Question:

A function



f

:

R

R

f : \mathbb{R} \rightarrow \mathbb{R}






f




:









R















R






is called periodic if there exists a positive number



p

p






p





such that



f

(

x

)

=

f

(

x

+

p

)

f(x) = f(x + p)






f


(


x


)




=








f


(


x




+








p


)





for all



x

R

x \in \mathbb{R}






x














R






. Is the set of periodic functions from



R

R

\mathbb{R} \rightarrow \mathbb{R}







R















R






a subspace of



R

R

\mathbb{R}^{\mathbb{R}}








R













R














? Explain.

UPD 2020/08/04: 下面的solution是错误的,感谢指正,正解可参考

https://math.stackexchange.com/questions/1764349/is-the-set-of-periodic-functions-from-mathbbr-to-mathbbr-a-subspace-of



https://linearalgebras.com/1c.html


Solution:



The answer to this question is YES. Now we will prove it.

Let



V

V






V





be the set of all periodic functions from



R

R

\mathbb{R} \rightarrow \mathbb{R}







R















R






.

Part 1:

Let



f

0

(

x

)

=

0

f_0(x) = 0







f










0


















(


x


)




=








0





. Clearly



f

0

V

f_0 \in V







f










0





























V





.

Part 2:

Take



f

,

g

V

f, g \in V






f


,




g













V





,



f

(

x

+

m

)

=

f

(

x

)

f(x + m) = f(x)






f


(


x




+








m


)




=








f


(


x


)





,



g

(

x

+

n

)

=

g

(

x

)

g(x + n) = g(x)






g


(


x




+








n


)




=








g


(


x


)





.

Clearly,



(

f

+

g

)

(

x

+

l

c

m

(

m

,

n

)

)

=

f

(

x

+

l

c

m

(

m

,

n

)

)

+

g

(

x

+

l

c

m

(

m

,

n

)

)

=

f

(

x

)

+

g

(

x

)

=

(

f

+

g

)

(

x

)

\begin{aligned}(f + g)(x + lcm(m, n)) = & f(x + lcm(m, n)) + g(x + lcm(m, n)) \\ = & f(x) + g(x) \\ = & (f + g)(x)\end{aligned}
















(


f




+




g


)


(


x




+




l


c


m


(


m


,




n


)


)




=








=








=



























f


(


x




+




l


c


m


(


m


,




n


)


)




+




g


(


x




+




l


c


m


(


m


,




n


)


)










f


(


x


)




+




g


(


x


)










(


f




+




g


)


(


x


)






















.

Thus



f

+

g

V

f + g \in V






f




+








g













V





.

Part 3:

Take



f

V

f \in V






f













V





, and



a

R

a \in R






a













R





.

We have



(

a

f

)

(

x

+

p

)

=

a

f

(

x

+

p

)

=

a

f

(

x

)

=

(

a

f

)

(

x

)

(af)(x + p) = a \cdot f(x + p) = a \cdot f(x) = (af)(x)






(


a


f


)


(


x




+








p


)




=








a













f


(


x




+








p


)




=








a













f


(


x


)




=








(


a


f


)


(


x


)





.

Thus



a

f

V

af \in V






a


f













V





.

Therefor the set of all periodic functions from



R

R

\mathbb{R} \rightarrow \mathbb{R}







R















R






is a subspace of



R

R

\mathbb{R}^{\mathbb{R}}








R













R














.



版权声明:本文为qq_39286680原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。