莫比乌斯变换及逆变换

  • Post author:
  • Post category:其他




1 积性函数



定义



定理1



2 Möbius变换及逆变换



定义

数论函数



f

(

n

)

F

(

n

)

f(n)、F(n)






f


(


n


)





F


(


n


)





,若





F

(

n

)

=

d

n

f

(

d

)

=

d

n

f

(

n

d

)

F(n)=\sum_{d|n}f(d)=\sum_{d|n}f(\frac{n}{d})






F


(


n


)




=

















d





n





























f


(


d


)




=

















d





n





























f


(













d














n




















)







则称



F

(

n

)

F(n)






F


(


n


)









f

(

n

)

f(n)






f


(


n


)





的Möbius变换,称



f

(

n

)

f(n)






f


(


n


)









F

(

n

)

F(n)






F


(


n


)





的Möbius逆变换。



定理2





f

(

n

)

f(n)






f


(


n


)





是给定的数论函数,



F

(

n

)

F(n)






F


(


n


)





是它的Möbius变换,且



n

=

p

1

α

1

p

r

α

r

n=p_1^{\alpha_1} \cdots p_r^{\alpha_r}






n




=









p










1










α










1











































p










r










α










r






































,那么




  1. F

    (

    n

    )

    =

    f

    (

    1

    )

    F(n)=f(1)






    F


    (


    n


    )




    =








    f


    (


    1


    )





    ,当



    n

    >

    1

    n>1






    n




    >








    1





    时,





    F

    (

    n

    )

    =

    e

    1

    =

    0

    α

    1

    e

    r

    =

    0

    α

    r

    f

    (

    p

    1

    e

    1

    p

    r

    e

    r

    )

    F(n)=\sum_{e_1=0}^{\alpha_1} \cdots \sum_{e_r=0}^{\alpha_r}f(p_1^{e_1} \cdots p_r^{e_r})






    F


    (


    n


    )




    =


















    e










    1


















    =


    0




















    α










    1



















































    e










    r


















    =


    0




















    α










    r




































    f


    (



    p










    1










    e










    1











































    p










    r










    e










    r



































    )









  2. f

    (

    n

    )

    f(n)






    f


    (


    n


    )





    是积性函数,则



    F

    (

    n

    )

    F(n)






    F


    (


    n


    )





    也是积性函数,且当



    n

    >

    1

    n>1






    n




    >








    1





    时,





    F

    (

    n

    )

    =

    i

    =

    1

    r

    (

    1

    +

    f

    (

    p

    i

    )

    +

    +

    f

    (

    p

    i

    α

    i

    )

    )

    =

    p

    α

    n

    (

    1

    +

    f

    (

    p

    )

    +

    +

    f

    (

    p

    α

    )

    )

    F(n)= \prod_{i=1}^{r}\left(1+f(p_i)+\cdots +f(p_i^{\alpha_i}) \right) = \prod_{p^\alpha|n}\left(1+f(p)+\cdots +f(p^{\alpha}) \right)






    F


    (


    n


    )




    =

















    i


    =


    1



















    r





















    (


    1




    +




    f


    (



    p










    i


















    )




    +









    +




    f


    (



    p










    i










    α










    i



































    )


    )





    =


















    p










    α












    n






























    (


    1




    +




    f


    (


    p


    )




    +









    +




    f


    (



    p











    α










    )


    )










  3. f

    (

    n

    )

    f(n)






    f


    (


    n


    )





    是完全积性函数,则





    F

    (

    n

    )

    =

    i

    =

    1

    r

    (

    1

    +

    f

    (

    p

    i

    )

    +

    +

    f

    α

    i

    (

    p

    i

    )

    )

    =

    p

    α

    n

    (

    1

    +

    f

    (

    p

    )

    +

    +

    f

    α

    (

    p

    )

    )

    F(n)= \prod_{i=1}^{r}\left(1+f(p_i)+\cdots +f^{\alpha_i}(p_i) \right) = \prod_{p^\alpha|n}(1+f(p)+\cdots +f^{\alpha}(p))






    F


    (


    n


    )




    =

















    i


    =


    1



















    r





















    (


    1




    +




    f


    (



    p










    i


















    )




    +









    +





    f












    α










    i


























    (



    p










    i


















    )


    )





    =


















    p










    α












    n



























    (


    1




    +








    f


    (


    p


    )




    +













    +









    f











    α










    (


    p


    )


    )







证明

  1. (略)
  2. 因为



    f

    (

    n

    )

    f(n)






    f


    (


    n


    )





    是积性函数,因此




    F

    (

    n

    )

    =

    e

    1

    =

    0

    α

    1

    e

    r

    =

    0

    α

    r

    f

    (

    p

    1

    e

    1

    )

    f

    (

    p

    r

    e

    r

    )

    =

    {

    e

    1

    =

    0

    α

    1

    f

    (

    p

    1

    e

    1

    )

    }

    {

    e

    r

    =

    0

    α

    r

    f

    (

    p

    r

    e

    r

    )

    }

    =

    F

    (

    p

    1

    α

    1

    )

    F

    (

    p

    r

    α

    r

    )

    F(n)=\sum_{e_1=0}^{\alpha_1} \cdots \sum_{e_r=0}^{\alpha_r}f(p_1^{e_1}) \cdots f(p_r^{e_r})=\left\{\sum_{e_1=0}^{\alpha_1}f(p_1^{e_1})\right\} \cdots\left\{\sum_{e_r=0}^{\alpha_r}f(p_r^{e_r})\right \}=F(p_1^{

    {\alpha}_1})\cdots F(p_r^{

    {\alpha}_r})






    F


    (


    n


    )




    =


















    e










    1


















    =


    0




















    α










    1



















































    e










    r


















    =


    0




















    α










    r




































    f


    (



    p










    1










    e










    1



































    )









    f


    (



    p










    r










    e










    r



































    )




    =










    {














    e










    1


















    =


    0




















    α










    1




































    f


    (



    p










    1










    e










    1



































    )



    }













    {














    e










    r


















    =


    0




















    α










    r




































    f


    (



    p










    r










    e










    r



































    )



    }






    =








    F


    (



    p










    1











    α











    1



































    )









    F


    (



    p










    r











    α











    r



































    )





  3. 因为



    f

    (

    n

    )

    f(n)






    f


    (


    n


    )





    是完全积性函数,因此




    F

    (

    n

    )

    =

    e

    1

    =

    0

    α

    1

    e

    r

    =

    0

    α

    r

    f

    e

    1

    (

    p

    1

    )

    f

    e

    r

    (

    p

    r

    )

    =

    {

    e

    1

    =

    0

    α

    1

    f

    e

    1

    (

    p

    1

    )

    }

    {

    e

    r

    =

    0

    α

    r

    f

    e

    r

    (

    p

    r

    )

    }

    F(n)=\sum_{e_1=0}^{\alpha_1} \cdots \sum_{e_r=0}^{\alpha_r}f^{e_1}(p_1) \cdots f^{e_r}(p_r)=\left\{\sum_{e_1=0}^{\alpha_1}f^{e_1}(p_1)\right\} \cdots\left\{\sum_{e_r=0}^{\alpha_r}f^{e_r}(p_r)\right \}






    F


    (


    n


    )




    =


















    e










    1


















    =


    0




















    α










    1



















































    e










    r


















    =


    0




















    α










    r





































    f












    e










    1


























    (



    p










    1


















    )










    f












    e










    r


























    (



    p










    r


















    )




    =










    {














    e










    1


















    =


    0




















    α










    1





































    f












    e










    1


























    (



    p










    1


















    )



    }













    {














    e










    r


















    =


    0




















    α










    r





































    f












    e










    r


























    (



    p










    r


















    )



    }









常见的Möbius变换





f

(

n

)

1

n

φ

(

n

)

μ

(

n

)

μ

(

n

)

/

n

F

(

n

)

τ

(

n

)

σ

(

n

)

n

I

(

n

)

φ

(

n

)

/

n

\begin{array}{c|ccccc} f(n) & \text{1} & \text{n} & \text{$\varphi(n)$} & \text{$\mu(n)$} & \text{$\mu(n)/n$} \\ \hline F(n) & \tau(n) &\sigma(n) & n & I(n) & \varphi(n)/n \\ \end{array}
























f


(


n


)








F


(


n


)
































1









τ


(


n


)






























n









σ


(


n


)






























φ


(


n


)









n






























μ


(


n


)









I


(


n


)






























μ


(


n


)


/


n









φ


(


n


)


/


n











































  • 除数个数函数



    τ

    (

    n

    )

    =

    d

    n

    1

    \tau(n)=\sum_{d|n}1






    τ


    (


    n


    )




    =





















    d





    n





















    1




  • 除数和函数



    σ

    (

    n

    )

    =

    d

    n

    d

    \sigma(n)=\sum_{d|n}d






    σ


    (


    n


    )




    =





















    d





    n





















    d




  • 莫比乌斯函数



    μ

    (

    n

    )

    \mu(n)






    μ


    (


    n


    )








    • μ

      (

      n

      )

      =

      {

      1

      d

      =

      1

      (

      1

      )

      r

      d

      =

      p

      1

      p

      r

      0

      \mu(n)= \begin{cases} 1 & d=1 \\ (-1)^r & d=p_1 \cdots p_r \\ 0 & 其他 \end{cases}






      μ


      (


      n


      )




      =



















































































      1








      (





      1



      )










      r















      0



























      d




      =




      1








      d




      =





      p










      1


























      p










      r
























































    • (

      d

      1

      d

      2

      )

      =

      1

      μ

      (

      d

      1

      d

      2

      )

      =

      μ

      (

      d

      1

      )

      μ

      (

      d

      2

      )

      若(d_1,d_2)=1,则 \mu(d_1\cdot d_2)=\mu(d_1)\cdot \mu(d_2)









      (



      d










      1






















      d










      2


















      )




      =








      1








      μ


      (



      d










      1






























      d










      2


















      )




      =








      μ


      (



      d










      1


















      )













      μ


      (



      d










      2


















      )




  • 单位函数



    I

    (

    n

    )

    =

    d

    n

    μ

    (

    d

    )

    I(n)=\sum_{d|n}\mu(d)






    I


    (


    n


    )




    =





















    d





    n





















    μ


    (


    d


    )










    I

    (

    n

    )

    =

    d

    n

    μ

    (

    d

    )

    =

    [

    n

    =

    1

    ]

    =

    {

    1

    n

    =

    1

    0

    n

    >

    1

    I(n)=\sum_{d|n}\mu(d)=[n=1]= \begin{cases} 1 & \text{$n=1$} \\ 0 & \text{$n>1$} \\ \end{cases}\quad






    I


    (


    n


    )




    =

















    d





    n





























    μ


    (


    d


    )




    =








    [


    n




    =








    1


    ]




    =










    {














    1








    0




























    n




    =




    1










    n




    >




    1






























例题

  • 例1:求



    μ

    2

    (

    n

    )

    /

    φ

    (

    n

    )

    \mu^2(n)/\varphi(n)







    μ










    2









    (


    n


    )


    /


    φ


    (


    n


    )





    的Möbius变换



    F

    (

    n

    )

    F(n)






    F


    (


    n


    )















    d

    p

    α

    μ

    2

    (

    d

    )

    /

    φ

    (

    d

    )

    =

    1

    +

    1

    p

    (

    1

    1

    p

    )

    =

    p

    p

    1

    =

    1

    1

    1

    p

    \because \quad \sum_{d|{p^{\alpha}}}\mu^2(d)/\varphi(d)=1+\frac{1}{p\cdot (1-\frac{1}{p})}=\frac{p}{p-1}=\frac{1}{1-\frac{1}{p}}


























    d







    p











    α







































    μ










    2









    (


    d


    )


    /


    φ


    (


    d


    )




    =








    1




    +



















    p









    (


    1





















    p
















    1





















    )














    1






















    =



















    p









    1














    p






















    =



















    1





















    p
















    1

































    1





























    μ

    2

    (

    n

    )

    φ

    (

    n

    )

    μ

    2

    (

    n

    )

    /

    φ

    (

    n

    )

    又 \because \quad \mu^2(n)、\varphi(n)、\mu^2(n)/\varphi(n) 是积性函数























    μ










    2









    (


    n


    )





    φ


    (


    n


    )






    μ










    2









    (


    n


    )


    /


    φ


    (


    n


    )


























    F

    (

    n

    )

    =

    d

    p

    1

    α

    1

    p

    r

    α

    r

    μ

    2

    (

    d

    )

    /

    φ

    (

    d

    )

    =

    1

    1

    1

    p

    1

    1

    1

    1

    p

    r

    =

    n

    φ

    (

    n

    )

    \therefore \quad F(n)= \sum_{d|{p_1^{

    {\alpha}_1}}\cdots{p_r^{

    {\alpha}_r}}}\mu^2(d)/\varphi(d)=\frac{1}{1-\frac{1}{p_1}}\cdots \frac{1}{1-\frac{1}{p_r}}=\frac{n}{\varphi(n)}

















    F


    (


    n


    )




    =

















    d







    p










    1











    α










    1








































    p










    r











    α










    r































































    μ










    2









    (


    d


    )


    /


    φ


    (


    d


    )




    =



















    1






















    p










    1
































    1

































    1






































    1






















    p










    r
































    1

































    1






















    =



















    φ


    (


    n


    )














    n























  • 例2:设



    n

    =

    p

    1

    α

    1

    p

    r

    α

    r

    n=p_1^{\alpha_1} \cdots p_r^{\alpha_r},






    n




    =









    p










    1










    α










    1











































    p










    r










    α










    r













































    Ω

    (

    n

    )

    \Omega(n)






    Ω


    (


    n


    )





    的Möbius变换



    F

    (

    n

    )

    F(n)






    F


    (


    n


    )





    .

    • 不同的素因数个数函数,非积性函数





      ω

      (

      n

      )

      =

      {

      r

      n

      >

      1

      0

      n

      =

      1

      \omega(n) = \begin{cases} r & \text{$n>1$}\\ 0 & \text{$n=1$}\\ \end{cases} \quad\quad\quad






      ω


      (


      n


      )




      =










      {














      r








      0




























      n




      >




      1










      n




      =




      1
































    • 素因数个数函数,非积性函数





      Ω

      (

      n

      )

      =

      {

      α

      1

      +

      +

      α

      r

      n

      >

      1

      0

      n

      =

      1

      \Omega(n) = \begin{cases} \alpha_1+\cdots + \alpha_r & \text{$n>1$} \\ 0 & \text{$n=1$} \\ \end{cases}\quad






      Ω


      (


      n


      )




      =










      {















      α










      1




















      +









      +





      α










      r
























      0




























      n




      >




      1










      n




      =




      1




























    • 除数个数函数,积性函数





      τ

      (

      n

      )

      =

      τ

      (

      p

      1

      α

      1

      p

      r

      α

      r

      )

      =

      (

      1

      +

      α

      1

      )

      (

      1

      +

      α

      2

      )

      (

      1

      +

      α

      r

      )

      \tau(n)=\tau(p_1^{\alpha_1} \cdots p_r^{\alpha_r})=(1+\alpha_1)(1+\alpha_2)\cdots(1+\alpha_r)






      τ


      (


      n


      )




      =








      τ


      (



      p










      1










      α










      1











































      p










      r










      α










      r



































      )




      =








      (


      1




      +









      α










      1


















      )


      (


      1




      +









      α










      2


















      )









      (


      1




      +









      α










      r


















      )








      解1:






      F

      (

      n

      )

      =

      e

      1

      =

      0

      α

      1

      e

      r

      =

      0

      α

      r

      Ω

      (

      p

      1

      e

      1

      p

      r

      e

      r

      )

      =

      e

      1

      =

      0

      α

      1

      e

      r

      =

      0

      α

      r

      (

      e

      1

      +

      e

      2

      +

      +

      e

      r

      )

      F(n) =\sum_{e_1=0}^{\alpha_1} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(p_1^{e_1} \cdots p_r^{e_r}) =\sum_{e_1=0}^{\alpha_1} \cdots \sum_{e_r=0}^{\alpha_r}(e_1+e_2+\cdots + e_r)






      F


      (


      n


      )




      =


















      e










      1


















      =


      0




















      α










      1



















































      e










      r


















      =


      0




















      α










      r




































      Ω


      (



      p










      1










      e










      1











































      p










      r










      e










      r



































      )




      =


















      e










      1


















      =


      0




















      α










      1



















































      e










      r


















      =


      0




















      α










      r


































      (



      e










      1




















      +









      e










      2




















      +













      +









      e










      r


















      )











      =

      i

      =

      1

      r

      1

      2

      α

      i

      (

      α

      1

      +

      1

      )

      (

      α

      r

      +

      1

      )

      =

      1

      2

      Ω

      (

      n

      )

      τ

      (

      n

      )

      =\prod_{i=1}^{r}\frac{1}{2}\alpha_i(\alpha_1+1)\cdots (\alpha_r+1)= \frac{1}{2}\Omega(n)\tau(n)






      =

















      i


      =


      1



















      r































      2














      1





















      α










      i


















      (



      α










      1




















      +








      1


      )









      (



      α










      r




















      +








      1


      )




      =



















      2














      1




















      Ω


      (


      n


      )


      τ


      (


      n


      )








      解2:






      F

      (

      n

      )

      =

      e

      1

      =

      0

      α

      1

      e

      r

      =

      0

      α

      r

      Ω

      (

      p

      1

      e

      1

      p

      r

      e

      r

      )

      F(n) =\sum_{e_1=0}^{\alpha_1} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(p_1^{e_1} \cdots p_r^{e_r})






      F


      (


      n


      )




      =


















      e










      1


















      =


      0




















      α










      1



















































      e










      r


















      =


      0




















      α










      r




































      Ω


      (



      p










      1










      e










      1











































      p










      r










      e










      r



































      )











      =

      e

      2

      =

      0

      α

      2

      e

      r

      =

      0

      α

      r

      Ω

      (

      1

      p

      2

      e

      2

      p

      r

      e

      r

      )

      +

      e

      2

      =

      0

      α

      2

      e

      r

      =

      0

      α

      r

      Ω

      (

      p

      1

      p

      2

      e

      2

      p

      r

      e

      r

      )

      +

      +

      e

      2

      =

      0

      α

      2

      e

      r

      =

      0

      α

      r

      Ω

      (

      p

      1

      α

      1

      p

      2

      e

      2

      p

      r

      e

      r

      )

      =\sum_{e_2=0}^{\alpha_2} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(1\cdot p_2^{e_2} \cdots p_r^{e_r}) + \sum_{e_2=0}^{\alpha_2} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(p_1\cdot p_2^{e_2} \cdots p_r^{e_r}) + \cdots +\sum_{e_2=0}^{\alpha_2} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(p_1^{\alpha_1}\cdot p_2^{e_2} \cdots p_r^{e_r})






      =


















      e










      2


















      =


      0




















      α










      2



















































      e










      r


















      =


      0




















      α










      r




































      Ω


      (


      1














      p










      2










      e










      2











































      p










      r










      e










      r



































      )




      +


















      e










      2


















      =


      0




















      α










      2



















































      e










      r


















      =


      0




















      α










      r




































      Ω


      (



      p










      1






























      p










      2










      e










      2











































      p










      r










      e










      r



































      )




      +













      +


















      e










      2


















      =


      0




















      α










      2



















































      e










      r


















      =


      0




















      α










      r




































      Ω


      (



      p










      1










      α










      1















































      p










      2










      e










      2











































      p










      r










      e










      r



































      )











      =

      (

      0

      +

      1

      +

      +

      α

      1

      )

      τ

      (

      p

      2

      e

      2

      p

      r

      e

      r

      )

      +

      (

      1

      +

      α

      1

      )

      e

      2

      =

      0

      α

      2

      e

      r

      =

      0

      α

      r

      Ω

      (

      p

      2

      e

      2

      p

      r

      e

      r

      )

      =(0+1+\cdots + \alpha_1)\cdot \tau(p_2^{e_2} \cdots p_r^{e_r}) +(1+\alpha_1)\cdot \sum_{e_2=0}^{\alpha_2} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(p_2^{e_2} \cdots p_r^{e_r})






      =








      (


      0




      +








      1




      +













      +









      α










      1


















      )













      τ


      (



      p










      2










      e










      2











































      p










      r










      e










      r



































      )




      +








      (


      1




      +









      α










      1


















      )























      e










      2


















      =


      0




















      α










      2



















































      e










      r


















      =


      0




















      α










      r




































      Ω


      (



      p










      2










      e










      2











































      p










      r










      e










      r



































      )











      =

      α

      1

      2

      (

      1

      +

      α

      1

      )

      τ

      (

      p

      2

      e

      2

      p

      r

      e

      r

      )

      +

      (

      1

      +

      α

      1

      )

      e

      2

      =

      0

      α

      2

      e

      r

      =

      0

      α

      r

      Ω

      (

      p

      2

      e

      2

      p

      r

      e

      r

      )

      =\frac{\alpha_1}{2} \cdot (1+\alpha_1)\cdot \tau(p_2^{e_2} \cdots p_r^{e_r}) +(1+\alpha_1)\cdot \sum_{e_2=0}^{\alpha_2} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(p_2^{e_2} \cdots p_r^{e_r})






      =



















      2















      α










      1















































      (


      1




      +









      α










      1


















      )













      τ


      (



      p










      2










      e










      2











































      p










      r










      e










      r



































      )




      +








      (


      1




      +









      α










      1


















      )























      e










      2


















      =


      0




















      α










      2



















































      e










      r


















      =


      0




















      α










      r




































      Ω


      (



      p










      2










      e










      2











































      p










      r










      e










      r



































      )











      =

      α

      1

      2

      τ

      (

      n

      )

      +

      (

      1

      +

      α

      1

      )

      e

      2

      =

      0

      α

      2

      e

      r

      =

      0

      α

      r

      Ω

      (

      p

      2

      e

      2

      p

      r

      e

      r

      )

      =

      1

      2

      Ω

      (

      n

      )

      τ

      (

      n

      )

      =\frac{\alpha_1}{2} \cdot \tau(n) +(1+\alpha_1)\cdot \sum_{e_2=0}^{\alpha_2} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(p_2^{e_2} \cdots p_r^{e_r}) =\frac{1}{2}\Omega(n)\tau(n)






      =



















      2















      α










      1















































      τ


      (


      n


      )




      +








      (


      1




      +









      α










      1


















      )























      e










      2


















      =


      0




















      α










      2



















































      e










      r


















      =


      0




















      α










      r




































      Ω


      (



      p










      2










      e










      2











































      p










      r










      e










      r



































      )




      =



















      2














      1




















      Ω


      (


      n


      )


      τ


      (


      n


      )





  • 例3:求



    φ

    (

    n

    )

    \varphi(n)






    φ


    (


    n


    )





    的Möbius变换



    F

    (

    n

    )

    F(n)






    F


    (


    n


    )















    F

    (

    n

    )

    =

    d

    n

    φ

    (

    d

    )

    =

    i

    =

    1

    r

    (

    1

    +

    φ

    (

    p

    i

    )

    +

    +

    φ

    (

    p

    i

    α

    i

    )

    )

    =

    i

    =

    1

    r

    (

    1

    +

    p

    i

    1

    +

    p

    i

    2

    p

    i

    +

    +

    p

    i

    α

    i

    p

    i

    α

    i

    1

    )

    =

    i

    =

    1

    r

    p

    i

    α

    i

    =

    n

    F(n)=\sum_{d|n}\varphi(d)=\prod_{i=1}^r(1+\varphi(p_i)+\cdots +\varphi(p_i^{\alpha_i}))\\ =\prod_{i=1}^r(1+p_i-1+p_i^2-p_i+\cdots + p_i^{\alpha_i}-p_i^{\alpha_i-1})\\ =\prod_{i=1}^rp_i^{\alpha_i}=n






    F


    (


    n


    )




    =

















    d





    n





























    φ


    (


    d


    )




    =

















    i


    =


    1


















    r

















    (


    1




    +








    φ


    (



    p










    i


















    )




    +













    +








    φ


    (



    p










    i










    α










    i



































    )


    )










    =

















    i


    =


    1


















    r

















    (


    1




    +









    p










    i





























    1




    +









    p










    i








    2






























    p










    i




















    +













    +









    p










    i










    α










    i















































    p










    i










    α










    i





















    1



















    )










    =

















    i


    =


    1


















    r




















    p










    i










    α










    i





































    =








    n







推论1





f

(

n

)

f(n)






f


(


n


)





是积性函数,则





d

n

μ

(

d

)

f

(

d

)

=

p

n

(

1

f

(

p

)

)

\sum_{d|n}\mu(d)f(d)=\prod_{p|n}(1-f(p))















d





n





























μ


(


d


)


f


(


d


)




=

















p





n



























(


1













f


(


p


)


)











d

n

μ

2

(

d

)

f

(

d

)

=

p

n

(

1

+

f

(

p

)

)

\sum_{d|n}\mu^2(d)f(d)=\prod_{p|n}(1+f(p))















d





n






























μ










2









(


d


)


f


(


d


)




=

















p





n



























(


1




+








f


(


p


)


)







证明

根据定理1(2)可得,





F

(

n

)

=

d

n

μ

(

d

)

f

(

d

)

=

i

=

1

r

(

μ

(

1

)

+

μ

(

p

i

)

f

(

p

i

)

+

+

μ

(

p

i

α

i

)

f

(

p

i

α

i

)

)

F(n)=\sum_{d|n}\mu(d)f(d)= \prod_{i=1}^{r}(\mu(1)+\mu(p_i)\cdot f(p_i)+\cdots +\mu(p_i^{\alpha_i})\cdot f(p_i^{\alpha_i}))






F


(


n


)




=

















d





n





























μ


(


d


)


f


(


d


)




=

















i


=


1



















r


















(


μ


(


1


)




+








μ


(



p










i


















)













f


(



p










i


















)




+













+








μ


(



p










i










α










i



































)













f


(



p










i










α










i



































)


)











=

i

=

1

r

(

1

f

(

p

i

)

)

= \prod_{i=1}^{r}(1-f(p_i))






=

















i


=


1



















r


















(


1













f


(



p










i


















)


)







同理可得:





F

(

n

)

=

d

n

μ

(

d

)

f

(

d

)

=

i

=

1

r

(

μ

2

(

1

)

+

μ

2

(

p

i

)

f

(

p

i

)

+

+

μ

2

(

p

i

α

i

)

f

(

p

i

α

i

)

)

F(n)=\sum_{d|n}\mu(d)f(d)= \prod_{i=1}^{r}(\mu^2(1)+\mu^2(p_i)\cdot f(p_i)+\cdots +\mu^2(p_i^{\alpha_i})\cdot f(p_i^{\alpha_i}))






F


(


n


)




=

















d





n





























μ


(


d


)


f


(


d


)




=

















i


=


1



















r


















(



μ










2









(


1


)




+









μ










2









(



p










i


















)













f


(



p










i


















)




+













+









μ










2









(



p










i










α










i



































)













f


(



p










i










α










i



































)


)











=

i

=

1

r

(

1

+

f

(

p

i

)

)

= \prod_{i=1}^{r}(1+f(p_i))






=

















i


=


1



















r


















(


1




+








f


(



p










i


















)


)







例题




  1. f

    (

    n

    )

    =

    1

    f(n)=1






    f


    (


    n


    )




    =








    1





    ,则



    d

    n

    μ

    (

    d

    )

    1

    =

    I

    (

    n

    )

    \sum_{d|n}\mu(d)\cdot 1=I(n)



















    d





    n





















    μ


    (


    d


    )













    1




    =








    I


    (


    n


    )







  2. f

    (

    n

    )

    =

    1

    /

    n

    f(n)=1/n






    f


    (


    n


    )




    =








    1


    /


    n





    ,则



    d

    n

    μ

    (

    d

    )

    /

    d

    =

    φ

    (

    n

    )

    /

    n

    \sum_{d|n}\mu(d)/d=\varphi(n)/n



















    d





    n





















    μ


    (


    d


    )


    /


    d




    =








    φ


    (


    n


    )


    /


    n






定理3





f

(

n

)

F

(

n

)

f(n)、F(n)






f


(


n


)





F


(


n


)





是数论函数,那么





F

(

n

)

=

d

n

f

(

d

)

=

d

n

f

(

n

d

)

f

(

n

)

=

d

n

μ

(

d

)

F

(

n

d

)

=

d

n

μ

(

n

d

)

F

(

d

)

F(n)=\sum_{d|n}f(d)=\sum_{d|n}f(\frac{n}{d}) \quad \Leftrightarrow \quad f(n)=\sum_{d|n}\mu(d)F(\frac{n}{d})=\sum_{d|n}\mu(\frac{n}{d})F(d)






F


(


n


)




=

















d





n





























f


(


d


)




=

















d





n





























f


(













d














n




















)

















f


(


n


)




=

















d





n





























μ


(


d


)


F


(













d














n




















)




=

















d





n





























μ


(













d














n




















)


F


(


d


)







证明


关键

:“关联约束”



转化

\overset{\text{转化}}{\rightarrow}


























转化














“独立约束”





d

n

g

(

n

d

)

k

d

f

(

k

)

=

k

l

=

d

k

l

n

g

(

n

k

l

)

f

(

k

)

=

k

n

f

(

k

)

l

n

k

g

(

l

)

\sum_{d|n}g(\frac{n}{d})\sum_{k|d}f(k) \overset{k\cdot l=d}{=} \sum_{k\cdot l|n}g(\frac{n}{k\cdot l})f(k)=\sum_{k|n}f(k)\sum_{l|\frac{n}{k}}g(l)















d





n





























g


(













d














n




















)













k





d





























f


(


k


)













=









k





l


=


d

























k





l





n





























g


(













k









l














n




















)


f


(


k


)




=

















k





n





























f


(


k


)













l

















k
















n
















































g


(


l


)











d

n

k

d

g

(

d

k

)

f

(

k

)

=

d

l

=

n

k

l

n

g

(

n

k

l

)

f

(

k

)

=

k

n

f

(

k

)

l

n

k

g

(

l

)

\sum_{d|n}\sum_{k|d}g(\frac{d}{k})f(k) \overset{d\cdot l=n}{=} \sum_{k\cdot l|n}g(\frac{n}{k\cdot l})f(k)=\sum_{k|n}f(k)\sum_{l|\frac{n}{k}}g(l)















d





n






































k





d





























g


(













k














d




















)


f


(


k


)













=









d





l


=


n

























k





l





n





























g


(













k









l














n




















)


f


(


k


)




=

















k





n





























f


(


k


)













l

















k
















n
















































g


(


l


)





  • 充分性





    d

    n

    f

    (

    d

    )

    =

    d

    n

    {

    k

    d

    μ

    (

    d

    k

    )

    F

    (

    k

    )

    }

    =

    k

    n

    F

    (

    k

    )

    l

    n

    k

    μ

    (

    l

    )

    =

    F

    (

    n

    )

    \sum_{d|n}f(d)=\sum_{d|n}\left\{\sum_{k|d}\mu(\frac{d}{k})F(k)\right\}=\sum_{k|n}F(k)\sum_{l|\frac{n}{k}}\mu(l)=F(n)















    d





    n





























    f


    (


    d


    )




    =

















    d





    n





















































































    k





    d





























    μ


    (













    k














    d




















    )


    F


    (


    k


    )



















































    =

















    k





    n





























    F


    (


    k


    )













    l

















    k
















    n
















































    μ


    (


    l


    )




    =








    F


    (


    n


    )





  • 必要性





    d

    n

    μ

    (

    n

    d

    )

    F

    (

    d

    )

    =

    d

    n

    μ

    (

    n

    d

    )

    k

    d

    f

    (

    k

    )

    =

    k

    n

    f

    (

    k

    )

    l

    n

    k

    μ

    (

    l

    )

    =

    f

    (

    n

    )

    \sum_{d|n}\mu(\frac{n}{d})F(d)=\sum_{d|n}\mu(\frac{n}{d})\sum_{k|d}f(k) =\sum_{k|n}f(k)\sum_{l|\frac{n}{k}}\mu(l)=f(n)















    d





    n





























    μ


    (













    d














    n




















    )


    F


    (


    d


    )




    =

















    d





    n





























    μ


    (













    d














    n




















    )













    k





    d





























    f


    (


    k


    )




    =

















    k





    n





























    f


    (


    k


    )













    l

















    k
















    n
















































    μ


    (


    l


    )




    =








    f


    (


    n


    )







例题





1

=

d

n

μ

(

d

)

τ

(

n

d

)

=

d

n

μ

(

n

d

)

τ

(

d

)

1=\sum_{d|n}\mu(d)\tau(\frac{n}{d})=\sum_{d|n}\mu(\frac{n}{d})\tau(d)






1




=

















d





n





























μ


(


d


)


τ


(













d














n




















)




=

















d





n





























μ


(













d














n




















)


τ


(


d


)











n

=

d

n

μ

(

d

)

σ

(

n

d

)

=

d

n

μ

(

n

d

)

σ

(

d

)

n=\sum_{d|n}\mu(d)\sigma(\frac{n}{d})=\sum_{d|n}\mu(\frac{n}{d})\sigma(d)






n




=

















d





n





























μ


(


d


)


σ


(













d














n




















)




=

















d





n





























μ


(













d














n




















)


σ


(


d


)











φ

(

n

)

=

d

n

μ

(

d

)

(

n

d

)

=

d

n

μ

(

n

d

)

d

\varphi(n)=\sum_{d|n}\mu(d)(\frac{n}{d})=\sum_{d|n}\mu(\frac{n}{d})d






φ


(


n


)




=

















d





n





























μ


(


d


)


(













d














n




















)




=

















d





n





























μ


(













d














n




















)


d











μ

(

n

)

n

=

d

n

μ

(

d

)

φ

(

n

d

)

/

n

d

=

d

n

μ

(

n

/

d

[

]

)

φ

(

d

)

d

\frac{\mu(n)}{n}=\sum_{d|n}\mu(d)\varphi(\frac{n}{d})/\frac{n}{d}=\sum_{d|n}\frac{\mu(n/d[])\varphi(d)}{d}

















n














μ


(


n


)






















=

















d





n





























μ


(


d


)


φ


(













d














n




















)


/













d














n






















=

















d





n








































d














μ


(


n


/


d


[


]


)


φ


(


d


)

























定理4





f

(

n

)

g

(

n

)

f(n)、g(n)






f


(


n


)





g


(


n


)





是数论函数,



h

(

n

)

=

d

n

f

(

d

)

g

(

n

d

)

h(n)=\sum_{d|n}f(d)g(\frac{n}{d})






h


(


n


)




=





















d





n





















f


(


d


)


g


(














d
















n





















)





,那么,当



f

(

n

)

g

(

n

)

f(n)、g(n)






f


(


n


)





g


(


n


)





都是积性函数时,



h

(

n

)

h(n)






h


(


n


)





也是积性函数.



证明




  1. f

    (

    1

    )

    =

    g

    (

    1

    )

    =

    1

    h

    (

    1

    )

    =

    1

    f(1)=g(1)=1 \rightarrow h(1)=1






    f


    (


    1


    )




    =








    g


    (


    1


    )




    =








    1













    h


    (


    1


    )




    =








    1








  2. (

    m

    n

    )

    =

    1

    (m,n)=1






    (


    m





    n


    )




    =








    1










    h

    (

    m

    n

    )

    =

    d

    m

    n

    f

    (

    m

    n

    )

    g

    (

    m

    n

    d

    )

    =

    d

    1

    d

    2

    m

    n

    f

    (

    m

    n

    )

    g

    (

    m

    n

    d

    1

    d

    2

    )

    =

    d

    1

    m

    f

    (

    m

    )

    g

    (

    m

    d

    1

    )

    d

    2

    n

    f

    (

    n

    )

    g

    (

    n

    d

    2

    )

    =

    h

    (

    m

    )

    h

    (

    n

    )

    h(mn)=\sum_{d|mn}f(mn)g(\frac{mn}{d})=\sum_{d_1d_2|mn}f(mn)g(\frac{mn}{d_1d_2})=\sum_{d_1|m}f(m)g(\frac{m}{d_1})\cdot \sum_{d_2|n}f(n)g(\frac{n}{d_2})=h(m)h(n)






    h


    (


    m


    n


    )




    =

















    d





    m


    n





























    f


    (


    m


    n


    )


    g


    (













    d














    m


    n




















    )




    =


















    d










    1



















    d










    2





















    m


    n





























    f


    (


    m


    n


    )


    g


    (














    d










    1



















    d










    2






























    m


    n




















    )




    =


















    d










    1





















    m





























    f


    (


    m


    )


    g


    (














    d










    1






























    m




















    )























    d










    2





















    n





























    f


    (


    n


    )


    g


    (














    d










    2






























    n




















    )




    =








    h


    (


    m


    )


    h


    (


    n


    )








    说明

  • m、n互质,它们的素因子互不相同;
  • d的素因子要么来自m,要么来自n,所以d可以分解成



    d

    1

    d

    2

    d_1、d_2







    d










    1






















    d










    2





















    ,它们的素因子分别来自m和n;

  • 关联约束



    转化

    \overset{\text{转化}}{\rightarrow}


























    转化














    独立约束。



推论2




f

(

n

)

f(n)






f


(


n


)





是积性函数的充分必要条件是它的Möbius变换



F

(

n

)

F(n)






F


(


n


)





是积性函数.



证明




μ

(

n

)

F

(

n

)

\because \mu(n)、F(n)















μ


(


n


)





F


(


n


)





是积性函数




\therefore












根据定理4可得,



f

(

n

)

=

d

n

μ

(

n

d

)

F

(

d

)

f(n)=\sum_{d|n}\mu(\frac{n}{d})F(d) 是积性函数






f


(


n


)




=





















d





n





















μ


(














d
















n





















)


F


(


d


)




















.



例题


提示

:求解积性函数F(n)的Möbius逆变换f(n)时,根据



f

(

p

α

)

=

F

(

p

α

)

F

(

p

α

1

)

f(p^\alpha)=F(p^\alpha)-F(p^{\alpha-1})






f


(



p










α









)




=








F


(



p










α









)













F


(



p











α





1










)





计算.

  • 例1:求



    F

    (

    n

    )

    =

    n

    t

    F(n)=n^t






    F


    (


    n


    )




    =









    n










    t












    的Möbius逆变换.










    F

    (

    n

    )

    =

    n

    t

    \because F(n)=n^t 是积性函数















    F


    (


    n


    )




    =









    n










    t

































    f

    (

    p

    α

    )

    =

    F

    (

    p

    α

    )

    F

    (

    p

    α

    1

    )

    =

    (

    p

    α

    )

    t

    (

    p

    α

    1

    )

    t

    =

    p

    α

    t

    (

    1

    p

    t

    )

    \therefore f(p^\alpha)=F(p^\alpha)-F(p^{\alpha-1})=(p^\alpha)^t-(p^{\alpha-1})^t =p^{\alpha t}(1-p^{-t})















    f


    (



    p










    α









    )




    =








    F


    (



    p










    α









    )













    F


    (



    p











    α





    1










    )




    =








    (



    p










    α










    )










    t




















    (



    p











    α





    1











    )










    t











    =









    p











    α


    t










    (


    1














    p














    t










    )











    f

    (

    n

    )

    =

    n

    t

    p

    n

    (

    1

    p

    t

    )

    \therefore f(n)=n^t\cdot \prod_{p|n}(1-p^{-t})















    f


    (


    n


    )




    =









    n










    t





























    p





    n



























    (


    1














    p














    t










    )





  • 例2:求



    F

    (

    n

    )

    =

    φ

    (

    n

    )

    F(n)=\varphi(n)






    F


    (


    n


    )




    =








    φ


    (


    n


    )





    的Möbius逆变换.










    F

    (

    n

    )

    =

    φ

    (

    n

    )

    \because F(n)=\varphi(n) 是积性函数















    F


    (


    n


    )




    =








    φ


    (


    n


    )


























    f

    (

    p

    α

    )

    =

    φ

    (

    p

    α

    )

    φ

    (

    p

    α

    1

    )

    =

    {

    p

    (

    1

    2

    p

    )

    α

    =

    1

    p

    α

    (

    1

    1

    p

    )

    2

    α

    2

    \therefore f(p^\alpha)=\varphi(p^\alpha)-\varphi(p^{\alpha-1})= \begin{cases} p(1-\frac{2}{p}) & \alpha=1\\ p^\alpha(1-\frac{1}{p})^2 & \alpha \geq2 \end{cases}















    f


    (



    p










    α









    )




    =








    φ


    (



    p










    α









    )













    φ


    (



    p











    α





    1










    )




    =










    {














    p


    (


    1





















    p
















    2





















    )









    p










    α









    (


    1





















    p
















    1






















    )










    2


































    α




    =




    1








    α









    2































    f

    (

    n

    )

    =

    n

    p

    n

    (

    1

    2

    p

    )

    p

    2

    n

    (

    1

    1

    p

    )

    2

    \therefore f(n)=n\cdot \prod_{p||n}(1-\frac{2}{p})\prod_{p^2|n}(1-\frac{1}{p})^2















    f


    (


    n


    )




    =








    n






















    p








    n



























    (


    1
























    p














    2




















    )














    p










    2












    n



























    (


    1
























    p














    1





















    )










    2















    说明

    :符号



    a

    k

    b

    a^k||b







    a










    k















    b





    表示 b 恰好被



    a

    k

    a^k







    a










    k












    整除.



3 Dirichlet卷积



定义





h

(

n

)

=

d

n

f

(

n

)

g

(

n

d

)

h(n)=\sum_{d|n}f(n)g(\frac{n}{d})






h


(


n


)




=





















d





n





















f


(


n


)


g


(














d
















n





















)





是定义在数论函数集合上的一种运算,则称



h

(

n

)

h(n)






h


(


n


)









f

(

n

)

g

(

n

)

f(n)、g(n)






f


(


n


)





g


(


n


)





的Dirichlet卷积,记作



h

=

f

g

h=f * g






h




=








f













g





,且有



h

(

n

)

=

(

f

g

)

(

n

)

h(n)=(f*g)(n)






h


(


n


)




=








(


f













g


)


(


n


)









f

g

f * g






f













g





可以看作一个算子.



性质




  • h

    (

    n

    )

    =

    (

    f

    g

    )

    (

    n

    )

    =

    d

    n

    f

    (

    d

    )

    g

    (

    n

    d

    )

    =

    d

    n

    f

    (

    n

    d

    )

    g

    (

    d

    )

    =

    d

    l

    =

    n

    f

    (

    d

    )

    g

    (

    l

    )

    h(n)=(f*g)(n)=\sum_{d|n}f(d)g(\frac{n}{d})=\sum_{d|n}f(\frac{n}{d})g(d)=\sum_{d\cdot l=n}f(d)g(l)






    h


    (


    n


    )




    =








    (


    f













    g


    )


    (


    n


    )




    =





















    d





    n





















    f


    (


    d


    )


    g


    (














    d
















    n





















    )




    =





















    d





    n





















    f


    (














    d
















    n





















    )


    g


    (


    d


    )




    =





















    d





    l


    =


    n





















    f


    (


    d


    )


    g


    (


    l


    )







  • g

    f

    =

    f

    g

    g * f =f * g






    g













    f




    =








    f













    g







  • g

    (

    f

    k

    )

    =

    (

    g

    f

    )

    k

    g * (f * k) =(g * f)* k






    g













    (


    f













    k


    )




    =








    (


    g













    f


    )













    k






版权声明:本文为jpphy0原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。