池化层返回窗口的最大或平均值
缓解卷积层对位置的敏感性
同样有窗口大小、填充和步幅作为超参数0
Python 3.8.8 (default, Apr 13 2021, 15:08:03) [MSC v.1916 64 bit (AMD64)]
Type 'copyright', 'credits' or 'license' for more information
IPython 7.22.0 -- An enhanced Interactive Python. Type '?' for help.
PyDev console: using IPython 7.22.0
Python 3.8.8 (default, Apr 13 2021, 15:08:03) [MSC v.1916 64 bit (AMD64)] on win32
import torch
from torch import nn
from d2l import torch as d2l
def pool2d(X, pool_size, mode='max'):
p_h, p_w = pool_size
Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
if mode == 'max':
Y[i, j] = X[i: i + p_h, j: j + p_w].max()
elif mode == 'avg':
Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
return Y
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
pool2d(X, (2, 2))
Out[4]:
tensor([[4., 5.],
[7., 8.]])
pool2d(X, (2, 2), 'avg')
Out[5]:
tensor([[2., 3.],
[5., 6.]])
填充和步幅
X = torch.arange(16, dtype=d2l.float32).reshape((1, 1, 4, 4))
X
Out[6]:
tensor([[[[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.]]]])
pool2d = nn.MaxPool2d(3)#深度学习框架中的步幅与池化窗口的大小相同,后面不够了
pool2d(X)
Out[7]: tensor([[[[10.]]]])
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)#可以自己设定
Out[8]:
tensor([[[[ 5., 7.],
[13., 15.]]]])
pool2d = nn.MaxPool2d((2, 3), padding=(1, 1), stride=(2, 3))
pool2d(X)
Out[9]:
tensor([[[[ 1., 3.],
[ 9., 11.],
[13., 15.]]]])
多个通道
X = torch.cat((X, X + 1), 1)
X
Out[11]:
tensor([[[[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.]],
[[ 1., 2., 3., 4.],
[ 5., 6., 7., 8.],
[ 9., 10., 11., 12.],
[13., 14., 15., 16.]]]])
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
Out[12]:
tensor([[[[ 5., 7.],
[13., 15.]],
[[ 6., 8.],
[14., 16.]]]])
版权声明:本文为weixin_43137437原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。