传统的6d位姿估计fangfa1_【6D位姿估计】开源项目(持续更新)

  • Post author:
  • Post category:其他


2020


  • PVN3D


[CVPR 2020]

PVN3D: A Deep Point-wise 3D Keypoints Voting Network for 6DoF Pose Estimation.

[ arXiv, Code]

09a992872a73298bc90c4fd67b582fdf.png

PVN3Dhttps://www.zhihu.com/video/1232768319741755392


  • 6-PACK


[ICRA 2020]

6-PACK: Category-level 6D Pose Tracker with Anchor-Based Keypoints.

[Project, arXiv, Code]

1251d09a023d02feb42b6caeea87c867.png
6-PACK

2019


  • DenseFusion


[CVPR 2019]

DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion.

[ Project , arXiv, Code ]

b591515e25a0b99e83f300636d1a8dd4.png

DenseFusionhttps://www.zhihu.com/video/1183137845279178752


  • NOCS


[CVPR 2019]

Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation.

[ Project, arXiv, Code]

b7da39a97bfc3fa711782417e62c7a24.png

NOCShttps://www.zhihu.com/video/1183138656461701120


  • PVNet


[CVPR 2019]

PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation.

[ Project, arXiv, Code]

969c2087eed18e806cd31a2cf90a19cd.png

PVNethttps://www.zhihu.com/video/1183138854776827904

论文作者的知乎帖:

彭思达:浙大CAD&CG实验室提出PVNet,实时且效果超群,已开源​zhuanlan.zhihu.com

e46ec226deb731dbe1e634cad274b620.png

  • Pix2Pose


[ICCV 2019]

Pix2Pose: Pixel-Wise Coordinate Regression of Objects for 6D Pose Estimation.

[ arXiv, Code]

028698ac2a4bf5e4a44786148016f2ee.png

Pix2Posehttps://www.zhihu.com/video/1233157174483632128


  • MTTM


[ICRA 2019]

Multi-Task Template Matching for Object Detection, Segmentation and Pose Estimation Using Depth Images.

[ Paper ]

2482d21d0b06229d4fe5913148363a5d.png

MTTMhttps://www.zhihu.com/video/1233332378149326848

2018


  • PoseCNN


[RSS 2018]

PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes.

[ Project, arXiv, Code, YCB-Video Datasets Toolbox ]

b96feec9a2b75a7b880f0a22fd3a8b4e.png

PoseCNNhttps://www.zhihu.com/video/1183140676269801472

YCB-video 数据集简介:

丁洪凯:位姿估计数据集 YCB-Video Dataset​zhuanlan.zhihu.com

bed6e375302a73195d9c923e86d544ac.png

  • DOPE


[CoRL 2018]

Deep Object Pose Estimation for Semantic Robotic Grasping of Household Objects.

[ Project, arXiv, Code ]

06b5404b44f0450574392c5e8024c3fa.png

DOPEhttps://www.zhihu.com/video/1183139670938075136


  • DeepIM


[ECCV 2018]

DeepIM: Deep Iterative Matching for 6D Pose Estimation.

[ Project, arXiv, Code]

DeepIM: Deep Iterative Matching for 6D Pose Estimation_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili​www.bilibili.com

a38d77c767c073f40d9aff4e145ec729.png

DeepIM: Deep Iterative Matching for 6D Pose Estimation (ECCV 2018)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili​www.bilibili.com

29499b7432b23c2389693808ba7b916b.png

2017


  • SSD-6D


[ICCV 2017]

SSD-6D: Making RGB-based 3D detection and 6D pose estimation great again.

[ arXiv, Code ]

SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again._哔哩哔哩 (゜-゜)つロ 干杯~-bilibili​www.bilibili.com

8125d1631fbc8a686bc8f4aedc002e18.png

SSD6D – Supplementary Video_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili​www.bilibili.com

15bccc8a948f1a76492656f86687d46b.png

  • BB8


[ICCV 2017]

BB8: A Scalable, Accurate, Robust to Partial Occlusion Method for Predicting the 3D Poses of Challenging Objects without Using Depth.

[ arXiv ]


经典的 Linemod

[1]. Multimodal Templates for Real-Time Detection of Texture-less Objects in Heavily Cluttered Scenes, IEEE International Conference on Computer Vision (ICCV), 2011.

[2]. Gradient Response Maps for Real-Time Detection of Texture-Less Objects. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012.

[3]. Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes. [PDF ]

作者 Stefan Hinterstoisser 的个人网站:

http://campar.in.tum.de/Main/StefanHinterstoisser​campar.in.tum.de


OpenCV 实现:

集成在 contrib 模块中

https://github.com/opencv/opencv_contrib/blob/master/modules/rgbd/src/linemod.cpp​github.com


ROS 实现:

集成在 Object Recognition Kitchen (ORK) 库中,是基于 OpenCV Linemod 实现

Object Recognition Kitchen​wg-perception.github.io

ROS kinetic + Realsens D435i + ORK + LINEMOD 物体识别​www.cnblogs.com

ecda08f7aa1021c99a373aea78830083.png


PPF

Model globally, match locally: Efficient and robust 3D object recognition. CVPR, 2010.

丁洪凯:【6D位姿估计】Point Pair Feature (PPF)​zhuanlan.zhihu.com

31338b7c02e66cd052fe3226e82cc5a5.png

Benchmark

  • BOP: Benchmark for 6D Object Pose Estimation

[ Project, Paper, BOP_Toolkit ]

部分数据集:

05ffaa41811b715182ca50c6bbdb4c76.png



版权声明:本文为weixin_39942785原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。