一直都有在玩数独
一般难度的都能完成
可是高难度的就完全没办法了
好多累计玩了几十小时都解不出
刚刚在网上看到这个介绍数独技巧的帖子
真的很实用
不过方法太多
得慢慢消化。。。
i)
唯一数法
:
如果我们发现某个格子中只有一个可用候选数,那么这个格子必然是这个数字,这就是唯一数法
如下面例子,
H5
格子中只有唯一候选数
3
ii)
隐含唯一数法
如果我们发现某一行某一列或某个九宫有一个候选数只出现在一个格子里面,那么这个格子必然是这个数字,这就是隐含唯一数法,如下面例子,第
3
列候选数
4
只出现在格子
I3
中
iii)
数对法
如果我们发现某一行某一列或某个九宫有两个格子只使用了两个候选数,那么这两个格子必然正好是这两个数字,那么在这个单元(行,列,或九宫)中,其它格子不会出现这两个候选数,这就是数对法,如下面例子,第一列中
B1
和
G1
的候选数都是
7,8;
那么
D1,H1
中的候选数
7,8
可以删除。
iv)
三链数法
如果我们发现某一行某一列或某个九宫有三个格子只使用了三个候选数,那么这三个格子必然正好是这三个数字,那么在这个单元(行,列,或九宫)中,其它格子不会出现这三个候选数,这就是三链数法,如下面例子,
最下面中间的九宫中格子
H4,H5,I5
三个格子都只使用候选数
2,8,6
;所以
G4,G6,I6
中出现的
8,6
都可以删除
v)
四链数法
如果我们发现某一行某一列或某个九宫有四个格子只使用了四个候选数,那么这四个格子必然正好是这四个数字,那么在这个单元(行,列,或九宫)中,其它格子不会出现这四个候选数,这就是四链数法;如下面例子中
上面中间的九宫中四个格子
A5,B5,C4,C5
都只使用了数字
1,2,3,4;
所以另外
4
个格子
A4,A6,B4,C6
中出现的数字
1,2,3,4
可以删除
vi)
隐含数对法
如果我们发现某一行某一列或某个九宫中有两个候选数只出现在两个格子中,那么这两个格子必然正好是这两个数字,那么这两格子中其他候选数可以删除,这就是隐含数对法;如下面例子,第
A
行中,只有格子
A7,A8
使用了数字
6,8;
所以这两个格子中其它数字
2,5,9
都可以删除
vii)
隐含三链数法
如果我们发现某一行某一列或某个九宫中有三个候选数只出现在三个格子中,那么这三个格子必然正好是这三个数字,那么这三格子中其他候选数可以删除,这就是隐含三链数法,如下面例子,第
8
列中只有格子
C8,F8,G8
使用了数字
1,3,4;
所以格子
F8
中出现的其它数字
6,7,8
可以删除
viii)
隐含四链数法
如果我们发现某一行某一列或某个九宫中有两个候选数只出现在两个格子中,那么这两个格子必然正好是这两个数字,那么这两格子中其他候选数可以删除,这就是隐含四链数法,我们借用四链数中的例子,可以发现上面中间的九宫格中,只有格子
A4,A6,B4,C6
使用了四个数字
5,6,7,9;
所以它们使用的其他数字
1,2,3,4
可以删除。
ix)
区域删减法
如果我们发现某一候选数在某一单元
(
行,列,九宫)中完全处在同另外一个单元的交集中,那么在另外一个单元中,不在交集中的这个候选数必然可以删除,如下面例子,第
D
行中所有数字
5
都正好在左边中间的九宫中,所以在这个九宫中,不在第
D
行的候选数
5(E3
中
)
可以删除
x)
矩形法
如果某个候选数在某两行
(
列
)
中只出现在某两行
(
列
)
中,那么在那两行
(
列
)
中
,
不在那两列
(
行
)
的这个候选数都可以删除,如下面例子,第
C
行和第
F
行的候选数
3
都正好是两个而且出现在第
1
列和第
8
列;所以第
1
列和第
8
列中,不在第
C
行和第
F
行的候选数
3 (A8,D1,D8,I1,I8)
都可以删除
把它扩展到三行或四行就可以得到高阶矩形法
(
我也看到翻译成
3
链列
,4
链列的
)
,同样下面例子中可以删除蓝色的候选数
6
xi)
唯一矩形法
最新添加唯一矩形法,这个方法利用了数独结果唯一性的特性:如果有四个构成矩形顶点的格子只使用两个数字,而且同在一行或同在一列的格子在同一个宫格中,那么这个局面的结果必然不是唯一的(交换它们使用的数字同样可以得到合法的数独结果),必然不是合法的数独局面。通过这个结论我们分别得到两种删减法
:
如下图
A3,C3,A9,C9
中,
C3
必然不能取候选数
1
和
9
(不然结果必然不唯一),所以
C3
只能取候选数
5.
如下图
,D2
和
F2
中必然有一个格子结果是
3,
不然
D2,F2,D9,F9
都只能是数字
1
和
9
,结果必然不唯一。
由此进一步得出第
2
列中
H2
不能取
3
(同样还可以得出在左中宫格中
F3
不能取
3)
xii)
关连数删减法
通过找到一串强关联数据来得出矛盾来删除候选数。
如下图,第
9
列只有
G9
和
D9
有候选数
3
,它们之间是强关联数据,同样
D4
和
I4
之间也是强关联的。
此外
D9
和
D4
之间在同一行都使用数据
3
,它们是弱关联。这样通过一系列强弱关联(弱关联可以用强关联替代),
如果我们可以得到一个矛盾链。如下图,我们可以通过提示中逻辑推理排除
G6=3(
实际上还可以排除
I7=3
和
I8=3)
下面是一个更加复杂的例子,用到了多个候选数
: