推荐给大数据学习者的八本书,还有详细的系统路线

  • Post author:
  • Post category:其他


关于大数据、人工智能的好书不多,每每流连于亚马逊等网站半天,却没找到值得读的,估计很多人跟我一样吧,今天推荐最近读过的八本,有科普类的,也有实操的,实在言之无物的就不提了!

1、吴军的《智能时代》 难度低

笔者专门写过读书笔记,非常通俗的读物,老少咸宜。

2、李开复的《人工智能》 难度低

笔者专门写过读书笔记,非常通俗的读物,老少咸宜。

3、李彦宏等《智能革命》 难度低

有些内容,但逻辑混乱,估计很多人一起写的缘故,但还是可以读读,毕竟能了解百度的一些进展。

4、郑泽宇《TensorFlow实战Google深度学习框架》 难度中

深度学习Tensorflow入门之书,中文版没看到更好的了,还有本《Tensorflow实战》很垃圾,注意这是实操之书,要读代码。

5、无名英雄《斯坦福大学2014 机器学习教程个人笔记》电子书 难度中上

对于机器学习有新的领悟,其实比很多出版的机器学习的书还好,同步可以看教学视频,自己晚上搜,注意这是实操之书,要有统计的一些背景。

6、谢朝阳《云计算规划、实施和运维》 难度中下

参加一个会议被赠送的书,算是读完了,但一直没找到能把云计算发展体系讲得深入浅出的好书,有推荐的可以推荐下。

7、马欢、刘晨译《DAMA数据管理知识体系指南》 难度中

一直搞数据管理却没看过这本书,这次算是读透了,有新的领悟,具有实操经验的人士看了会有较深感悟,否则有些地方会觉得云里雾里。

8、Danette McGilvray《数据质量工程实践》 难度中

绝版了,买了打印的书,体系写得不错,可惜纸张太差。

9、《衡水重点中学状元手写笔记》,英语,数学,语文

为了孩子,向新时代的学霸学习。

欢迎大家反馈留言推荐大数据、云计算、人工智能的好书,读到好书,一定会写笔记分享出来,大家共同进步!


大数据学习方向

一、大数据运维之Linux基础

打好Linux基础,以便更好地学习Hadoop,hbase,NoSQL,Spark,Storm,docker,openstack等。因为企业

中的项目基本上都是使用Linux环境下搭建或部署的。

1)Linux系统概述

2)系统安装及相关配置

3)Linux网络基础

4)OpenSSH实现网络安全连接

5)vi文本编辑器

6)用户和用户组管理

7)磁盘管理

8)Linux文件和目录管理

9)Linux终端常用命令

10)linux系统监测与维护

二、大数据开发核心技术 – Hadoop 2.x从入门到精通

大数据的基石:其一,分布式文件系统HDFS用于存储海量数据,无论是Hive、HBase或者Spark数据存储在其上面;其二是分布式资源管理框架

YARN,是Hadoop 云操作系统(也称数据系统),管理集群资源和分布式数据处理框架MapReduce、Spark应用的资源调度与监控;分布式并行计算框架

MapReduce目前是海量数据并行处理的一个最常用的框架。Hadoop 2.x的编译、环境搭建、HDFS Shell使用,YARN 集群资源管理与任务监控,MapReduce编

程,分布式集群的部署管理(包括高可用性HA)必须要掌握的。

一、初识Hadoop 2.x

1)大数据应用发展、前景

2)Hadoop 2.x概述及生态系统

3)Hadoop 2.x环境搭建与测试

二、深入Hadoop 2.x

1)HDFS文件系统的架构、功能、设计

2)HDFS Java API使用

3)YARN 架构、集群管理、应用监控

4)MapReduce编程模型、Shuffle过程、编程调优

三、高级Hadoop 2.x

1)分布式部署Hadoop 2.x

2)分布式协作服务框架Zookeeper

3)HDFS HA架构、配置、测试

4)HDFS 2.x中高级特性

5)YARN HA架构、配置

6)Hadoop 主要发行版本(CDH、HDP、



版权声明:本文为qq_41842579原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。