CPU运行神经网络较慢,可以使用GPU加速。
安装cuda版本的to
demo
导入torch库以后,调用下面的函数,如果打印True就说明安装成功。
import torch
print(torch.cuda.is_available())
定义一个cuda设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
将网络的参数设置为cuda张量
net = Net().to(device)
将输入和输出设置为cuda张量
input, label = input.to(device), label.to(device)
完整代码
这是一个简易神经网络训练的代码,是一份通用代码,如果cuda设备是可用的,则使用cuda加速,否则使用cpu运算。
import torch
#张量:不初始化(都是0)
print("构造张量:不初始化")
x = torch.empty((5,3))
print(x)
#随机初始化
print("构造张量:随机初始化")
x = torch.rand((5,3))
print(x)
#全0矩阵
print("构造张量:全0")
x = torch.zeros((5,3), dtype=torch.long)
print(x)
#从列表构造张量
print("构造张量:从列表构造张量")
x = torch.tensor([1, 2, 3])
print(x)
#从已有张量构造张量:y会继承x的属性
print("构造张量:从已有张量构造张量")
y = x.new_ones((5, 3), dtype=torch.long)
print(y)
y = torch.rand_like(x, dtype=torch.float)
print(y)
#获取维度信息
print("获取维度信息")
x = torch.empty((5,3))
print(x.shape)
#基本运算
print("基本运算")
x = torch.rand((5,3))
y = torch.rand_like(x)
print(x+y)
print(x.add(y))
#带有_的函数会改变调用此函数的对象
x.add_(y)
print(x)
#改变形状
print("改变形状")
x = torch.rand(4,4)
y = x.view(-1, 8)
print(x.size(), y.size())
#如果只有一个元素,获取元素
print("获取元素")
x = torch.rand((1,1))
print(x)
print(x.item())
#%%
#自动微分
import torch
x = torch.ones(2, 2, requires_grad=True)
y = x + 2
z = y * y * 3
out = z.mean()
#out是标量,因此反向传播无需指定参数
out.backward()
#打印梯度
print("打印梯度")
print(x.grad)
#雅克比向量积
print("雅克比向量积")
x = torch.rand(3, requires_grad=True)
y = x * 2
print(y)
#反向传播的参数是权重
#I = w1*y1 + w2*y2 + w3 * y3
#这里是I对x的各个分量求导
w = torch.tensor([1,2,3], dtype=torch.float)
y.backward(w)
print(x.grad)
#%%
#神经网络
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import torch.utils.data as Data
#神经网络需要定义两个函数
#分别是构造函数,前向传播
#自定义的神经网络需要继承nn.Module
class Net(nn.Module):
#构造函数
def __init__(self):
super(Net, self).__init__()
#卷积层三个参数:in_channel, out_channels, 5*5 kernal
self.con1 = nn.Conv2d(3, 116, 5)
self.con2 = nn.Conv2d(116, 100, 5)
#全连接层两个参数:in_channels, out_channels
self.fc1 = nn.Linear(100 * 5 * 5, 500)
self.fc2 = nn.Linear(500, 84)
self.fc3 = nn.Linear(84, 10)
#前向传播
def forward(self, input):
#卷积 --> 激活函数(Relu) --> 池化
x = self.con1(input)
x = F.relu(x)
x = F.max_pool2d(x, (2, 2))
#重复上述过程
x = self.con2(x)
x = F.relu(x)
x = F.max_pool2d(x, (2, 2))
#展平
x = x.view(-1, self.num_flat_features(x))
#全连接层
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
x = F.softmax(x)
return x
#展平
def num_flat_features(self, x):
size = x.size()[1:]
num_features = 1
for i in size:
num_features = num_features * i
return num_features
#测试神经网络的输入与输出
# net = Net()
# input = torch.randn((1, 3, 32, 32))
# out = net(input)
# print(out.size())
#%%
#训练一个神经网络的步骤
#1. 定义函数集:确定神经网络的结构
#2. 定义损失函数
#3. 寻找最优函数
#3.1 设置优化器种类(随机梯度下降,Adam等)
#3.2 前向传播
#3.3 计算梯度:反向传播
#3.4 更新参数
#3.5 梯度清零
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("*********************")
print(device)
#开始训练
net = Net().to(device)
#损失函数
criterion = nn.CrossEntropyLoss()
#优化器
optimizer = optim.Adam(net.parameters(), lr = 0.001)
#定义变换
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))]
)
#训练集和测试集
transet = torchvision.datasets.CIFAR10(root = './data', train = True, download=True, transform = transform)
testset = torchvision.datasets.CIFAR10(root = './data', train=False, download=True, transform = transform)
trainLoader = Data.DataLoader(dataset = transet, batch_size = 400, shuffle = True)
testLoader = Data.DataLoader(dataset = testset, batch_size = 400, shuffle = False)
num_epoches = 15
#开始训练
for epoch in range(num_epoches):
correct = 0
total = 0
run_loss = 0.0
for i, data in enumerate(trainLoader):
input, label = data
input, label = input.to(device), label.to(device)
optimizer.zero_grad()
outputs = net(input)
lossValue = criterion(outputs, label)
lossValue.backward()
optimizer.step()
run_loss += lossValue.item()
num = 20
if i % num == num - 1:
print('[%d, %5d] loss : %.3f' % (epoch + 1, i + 1, run_loss / num))
run_loss = 0
#训练集准确率
_, pred = outputs.max(1)
correct += (pred == label).sum().item()
total += label.size()[0]
print("训练集准确率:", correct / total)
print("finished training!")
#预测
correct = 0
total = 0
#预测的时候,无需梯度更新
with torch.no_grad():
for data in testLoader:
input, label = data
input, label = input.to(device), label.to(device)
outputs = net(input)
_, pre = torch.max(outputs, 1)
total += label.size(0)
correct += (pre == label).sum().item()
print("准确率:", correct / total)
版权声明:本文为weixin_42708161原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。