机械手末端速度计算(实例)

  • Post author:
  • Post category:其他




机械手末端速度计算(实例)

上一篇博文已经推导了相邻连杆i和连杆i+1间速度的传递

  • 连杆i+1为旋转关节时有





i

+

1

w

i

+

1

=

i

i

+

1

R

 

i

w

i

+

θ

˙

i

+

1

 

i

+

1

Z

^

i

+

1

(5-45)

^{i+1}w_{i+1}=^{i+1}_iR \ ^iw_i+\dot\theta{i+1}\ ^{i+1}\widehat Z{i+1} \tag{5-45}


















i


+


1











w











i


+


1






















=










i









i


+


1

























R













i










w










i




















+















θ






˙








i




+




1















i


+


1

















Z















i




+




1








(



5





4


5



)










i

+

1

v

i

+

1

=

i

i

+

1

R

(

i

v

i

+

i

w

i

×

i

P

i

+

1

)

(5-47)

^{i+1}v_{i+1}=^{i+1}_iR(^iv_i+^iw_i\times^iP_{i+1}) \tag{5-47}


















i


+


1











v











i


+


1






















=










i









i


+


1

























R



(










i










v










i





















+










i
















w










i





















×










i
















P











i


+


1



















)







(



5





4


7



)






  • 连杆i+1为移动关节时有





i

+

1

w

i

+

1

=

i

i

+

1

R

 

i

w

i

i

+

1

v

i

+

1

=

i

i

+

1

R

(

i

v

i

+

i

w

i

×

i

P

i

+

1

)

+

d

˙

i

+

1

 

i

+

1

Z

^

i

+

1

(5-48)

^{i+1}w_{i+1}=^{i+1}_iR\ ^iw_i \\ ^{i+1}v_{i+1}=^{i+1}_iR(^iv_i+^iw_i\times ^iP_{i+1})+\dot d_{i+1}\ ^{i+1}\widehat Z_{i+1} \tag{5-48}


















i


+


1











w











i


+


1






















=










i









i


+


1

























R













i










w










i






























i


+


1











v











i


+


1






















=










i









i


+


1

























R



(










i










v










i





















+










i
















w










i





















×










i
















P











i


+


1



















)




+
















d






˙
















i


+


1































i


+


1


















Z























i


+


1
























(



5





4


8



)








例子

如下图所示,计算出操作臂末端的速度,将它表达成关节速度的函数。给出两种形式的解答,一种是用坐标系{3}表示,另一种是用坐标系{0}表示。

在这里插入图片描述

连杆间的旋转变换矩阵为





1

0

R

=

[

cos

θ

1

sin

θ

1

0

sin

θ

1

cos

θ

1

0

0

0

1

]

2

1

R

=

[

cos

θ

2

sin

θ

2

0

sin

θ

2

cos

θ

2

0

0

0

1

]

3

2

R

=

[

1

0

0

0

1

0

0

0

1

]

^0_1R= \left [ \begin{matrix} \cos\theta_1 & -\sin\theta_1 & 0\\ \sin\theta_1 & \cos\theta1 & 0 \\ 0 & 0 & 1 \end {matrix} \right] \\ ^1_2R= \left [ \begin{matrix} \cos\theta_2 & -\sin\theta_2 & 0\\ \sin\theta_2 & \cos\theta2 & 0 \\ 0 & 0 & 1 \end {matrix} \right] \\ ^2_3R= \left [ \begin{matrix} 1 & 0 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1 \end {matrix} \right]

















1








0


















R




=
























































cos





θ










1
























sin





θ










1
























0


































sin





θ










1
























cos




θ


1








0





























0








0








1






































































2








1


















R




=
























































cos





θ










2
























sin





θ










2
























0


































sin





θ










2
























cos




θ


2








0





























0








0








1






































































3








2


















R




=
























































1








0








0





























0








1








0





























0








0








1




























































对连杆依次使用上一篇博文中的式(5-45)和(5-47),就有





1

w

1

=

[

0

0

θ

˙

1

]

(5-50)

^1w_1=\left [ \begin {matrix} 0 \\ 0 \\ \dot \theta_1 \end {matrix} \right ] \tag{5-50}

















1










w










1




















=
























































0








0
















θ






˙















1














































































(



5





5


0



)










1

v

1

=

[

0

0

0

]

(5-51)

^1v_1=\left [ \begin{matrix} 0 \\ 0 \\ 0 \end {matrix}\right] \tag{5-51}

















1










v










1




















=
























































0








0








0






























































(



5





5


1



)










2

w

2

=

1

2

R

 

1

w

1

+

θ

˙

2

 

2

Z

^

2

=

[

0

0

θ

˙

1

+

θ

˙

2

]

(5-52)

^2w_2=^2_1R\ ^1w_1+\dot \theta_2\ ^2\widehat Z_2=\left [ \begin {matrix} 0 \\ 0 \\ \dot\theta_1+\dot \theta_2 \end {matrix}\right ] \tag{5-52}

















2










w










2





















=










1








2
























R













1










w










1




















+
















θ






˙















2





























2

















Z






















2




















=
























































0








0
















θ






˙















1




















+












θ






˙















2














































































(



5





5


2



)










2

v

2

=

1

2

R

(

1

v

1

+

1

w

1

×

1

P

2

)

=

[

c

2

s

2

0

s

2

c

2

0

0

0

1

]

(

[

0

0

0

]

+

[

0

0

θ

˙

1

]

×

[

0

l

1

0

]

)

=

[

l

1

s

2

θ

˙

1

l

1

c

2

θ

1

0

]

(5-53)

^2v_2=^2_1R(^1v_1+^1w_1\times ^1P_2) =\left [\begin{matrix} c_2 &s_2& 0 \\ -s_2& c_2 &0 \\ 0 & 0& 1 \end {matrix}\right] \left ( \left[ \begin{matrix} 0\\ 0 \\ 0 \end{matrix} \right] +\left[ \begin{matrix} 0\\ 0 \\ \dot\theta_1 \end{matrix} \right] \times \left[ \begin{matrix} 0\\ l_1\\ 0 \end{matrix} \right] \right)\\ =\left [ \begin{matrix} l_1s_2\dot \theta_1 \\ l_1c_2\theta_1 \\ 0 \end{matrix}\right] \tag{5-53}

















2










v










2





















=










1








2
























R



(










1










v










1





















+










1
















w










1





















×










1
















P










2


















)




=

























































c










2




























s










2
























0






























s










2

























c










2
























0





























0








0








1

















































































































































0








0








0



























































+




















































0








0
















θ






˙















1











































































×




















































0









l










1
























0







































































































=

























































l










1



















s










2


























θ






˙















1

























l










1



















c










2



















θ










1
























0






























































(



5





5


3



)










3

w

3

=

2

3

R

2

w

2

+

θ

˙

2

 

2

Z

^

2

=

2

w

2

(5-54)

^3w_3=^3_2R ^2w_2+\dot \theta_2\ ^2\widehat Z_2=^2w_2 \tag{5-54}

















3










w










3





















=










2








3

























R










2










w










2




















+
















θ






˙















2





























2

















Z






















2





















=










2
















w










2























(



5





5


4



)










3

v

3

=

2

3

R

(

2

v

2

+

2

w

2

×

2

P

3

)

=

[

l

1

s

2

θ

˙

1

l

1

c

2

θ

˙

1

+

l

2

(

θ

˙

1

+

θ

˙

2

)

0

]

(5-55)

^3v_3=^3_2R(^2v_2+^2w_2\times ^2P_3)=\left [ \begin{matrix} l_1s_2\dot \theta_1 \\ l_1c_2\dot\theta_1+l_2(\dot\theta_1+\dot\theta_2) \\ 0 \end{matrix} \right]\tag{5-55}

















3










v










3





















=










2








3
























R



(










2










v










2





















+










2
















w










2





















×










2
















P










3


















)




=

























































l










1



















s










2


























θ






˙















1

























l










1



















c










2


























θ






˙















1




















+





l










2


















(










θ






˙















1




















+












θ






˙















2


















)








0






























































(



5





5


5



)






求速度相对于固定极坐标系的变换





3

0

R

=

1

0

R

 

2

1

R

 

3

2

R

=

[

c

12

s

12

0

s

12

c

12

0

0

0

1

]

(5-56)

^0_3R=^0_1R\ ^1_2R\ ^2_3R=\left[\begin{matrix} c_{12} &-s_{12} &0\\ s_{12} &c_{12} &0 \\ 0 & 0& 1 \end{matrix}\right]\tag{5-56}

















3








0


















R





=










1








0
























R













2








1


















R













3








2


















R




=

























































c











1


2


























s











1


2

























0

































s











1


2


























c











1


2

























0





























0








0








1






























































(



5





5


6



)








通过这个变换得到





0

v

3

=

[

l

1

s

1

θ

˙

1

l

2

s

12

(

θ

˙

1

+

θ

˙

2

)

l

1

c

1

θ

˙

1

+

l

2

c

12

(

θ

˙

1

+

θ

˙

2

)

0

]

(5-57)

^0v_3=\left[\begin{matrix} -l_1s_1\dot\theta_1-l_2s_{12}(\dot\theta_1+\dot\theta_2) \\ l_1c_1\dot\theta_1+l_2c_{12}(\dot\theta_1+\dot\theta_2) \\0 \end{matrix}\right]\tag{5-57}

















0










v










3




















=




























































l










1



















s










1


























θ






˙















1


























l










2



















s











1


2



















(










θ






˙















1




















+












θ






˙















2


















)









l










1



















c










1


























θ






˙















1




















+





l










2



















c











1


2



















(










θ






˙















1




















+












θ






˙















2


















)








0






























































(



5





5


7



)






参考文献

[1] JOHN J.CRAIG. 机器人学导论: 第3版[M]. 机械工业出版社, 2006.



版权声明:本文为Galaxy_Robot原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。