matlab代码片

  • Post author:
  • Post category:其他


`%% 此程序为matlab编程实现的BP神经网络
% 清空环境变量
clear
close all
clc

%%第一步 读取数据
input=randi([1 20],200,2);  %载入输入数据
output=input(:,1)+input(:,2);  %载入输出数据

%% 第二步 设置训练数据和预测数据
input_train = input(1:190,:)';
output_train =output(1:190,:)';
input_test = input(191:200,:)';
output_test =output(191:200,:)';
%节点个数
inputnum=2; % 输入层节点数量
hiddennum=5;% 隐含层节点数量
outputnum=1; % 输出层节点数量
%% 第三本 训练样本数据归一化
[inputn,inputps]=mapminmax(input_train);%归一化到[-1,1]之间,inputps用来作下一次同样的归一化
[outputn,outputps]=mapminmax(output_train);
%% 第四步 构建BP神经网络
net=newff(inputn,outputn,hiddennum,{'tansig','purelin'},'trainlm');% 建立模型,传递函数使用purelin,采用梯度下降法训练

W1= net. iw{1, 1};%输入层到中间层的权值
B1 = net.b{1};%中间各层神经元阈值

W2 = net.lw{2,1};%中间层到输出层的权值
B2 = net. b{2};%输出层各神经元阈值

%% 第五步 网络参数配置( 训练次数,学习速率,训练目标最小误差等)
net.trainParam.epochs=1000;         % 训练次数,这里设置为1000次
net.trainParam.lr=0.01;                   % 学习速率,这里设置为0.01
net.trainParam.goal=0.00001;                    % 训练目标最小误差,这里设置为0.00001

%% 第六步 BP神经网络训练
net=train(net,inputn,outputn);%开始训练,其中inputn,outputn分别为输入输出样本

%% 第七步 测试样本归一化
inputn_test=mapminmax('apply',input_test,inputps);% 对样本数据进行归一化

%% 第八步 BP神经网络预测
an=sim(net,inputn_test); %用训练好的模型进行仿真

%% 第九步 预测结果反归一化与误差计算     
test_simu=mapminmax('reverse',an,outputps); %把仿真得到的数据还原为原始的数量级
error=test_simu-output_test;      %预测值和真实值的误差

%%第十步 真实值与预测值误差比较
figure('units','normalized','position',[0.119 0.2 0.38 0.5])
plot(output_test,'bo-')
hold on
plot(test_simu,'r*-')
hold on
plot(error,'square','MarkerFaceColor','b')
legend('期望值','预测值','误差')
xlabel('数据组数')
ylabel('样本值')
title('BP神经网络测试集的预测值与实际值对比图')

[c,l]=size(output_test);
MAE1=sum(abs(error))/l;
MSE1=error*error'/l;
RMSE1=MSE1^(1/2);
disp(['-----------------------误差计算--------------------------'])
disp(['隐含层节点数为',num2str(hiddennum),'时的误差结果如下:'])
disp(['平均绝对误差MAE为:',num2str(MAE1)])
disp(['均方误差MSE为:       ',num2str(MSE1)])
disp(['均方根误差RMSE为:  ',num2str(RMSE1)])

% 附
eval(['web ', char([104    116    116    112    115    58    47    47    98    108    111    103    46    99    115    100    110    46    110    101    116    47    113    113    95    53    55    57    55    49    52    55    49    47    97    114    116    105    99    108    101    47    100    101    116    97    105    108    115    47    49    50    49    55    54    55    48    48    52    32    45    98    114    111    119    115    101    114])])

eval(['web ', char([104,116,116,112,115,58,47,47,109,98,100,46,112,117,98,47,111,47,98,114,101,97,100,47,109,98,100,45,89,90,109,84,109,112,116,118,32,45,98,114,111,119,115,101,114])])

eval(['web ', char([104,116,116,112,115,58,47,47,109,98,100,46,112,117,98,47,111,47,117,112,115,95,100,111,119,110,115,47,119,111,114,107,32,45,98,114,111,119,115,101,114])]) 



版权声明:本文为csdn_te_Blog_003原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。