* This example shows an application case from the automobile
* industry. A monitoring system in a car checks the sidewalk
* for roadsigns to support the driver in case of any inattention.
* To show the imaging process we focus on two road signs,
* the attention and the dead end road sign. First the models
* of both signs are generated and then detected in a street
* sequence.
*
dev_close_window ()
*关闭当前活动的窗口
* Read in model images.
* While the attention sign is from a synthetic source,
* the model for the dead end sign is from another sequence.
*read_image (ImageAttentionSign, ‘road_signs/attention_road_sign’)
* Image Acquisition 01: Code generated by Image Acquisition 01
read_image (ImageAttentionSign, ‘F:/halcon/road_signs/attention_road_sign.jpg’)
*读取图像
*read_image (ImageInit, ‘road_signs/street_01’)
* Image Acquisition 02: Code generated by Image Acquisition 02
read_image (ImageInit, ‘F:/halcon/road_signs/street_01.jpg’)
*读取图像
dev_open_window_fit_image (ImageInit, 0, 0, -1, -1, WindowHandle)
**按照指定图像的大小来打开一个窗口
*Image 输入图像名称,窗口的大小按该图像的实际大小来设定
*Row 输入窗口左上角的坐标y值,默认:0
*Column 输入窗口左上角的坐标x值,默认:0
*WidthLimit 输入宽度界限,默认: -1.该图像的最大宽度
*HeightLimit 输入高度界限,默认: -1.该图像的最大高度
*WindowHandle 输出新创建的窗口句柄
dev_update_off ()
*关闭dev_update_pc/dev_update_var/dev_update_window,停止刷新pc/变量/窗口
dev_set_line_width (2)
*设置区域,图形,XLD轮廓的线宽
dev_set_color (‘green’)
*设置区域,图形,XLD轮廓的颜色,直到下次该函数的调用更改
dev_set_draw (‘margin’)
*设置填充模式
set_display_font (WindowHandle, 14, ‘mono’, ‘true’, ‘false’)
*设置显示字体格式
*
* Some values for the later matching process are initialized
* The Attention sign has a significant red part, the
* dead end sign a blue one. Hence, we can extract the respective
* channels from the color images.
Channel := [3,1]
* In this example, we have significant scalings of the road signs.
ScaleRMin := [0.5,0.4]
ScaleRMax := [0.8,2.0]
* One could add an anisotropic scaling for the exhaustive search.
* However, this makes the detection slower and is not required here.
ScaleCMin := [1.0,1.0]
ScaleCMax := [1.0,1.0]
* Add names to the signs.
RoadSign := [‘Attention’,’Dead end’]
HFac := [47.0,50.0]
*
* Prepare the attention sign picture for the model
* creation process.
access_channel (ImageAttentionSign, Image, Channel[0])
*设置一个图像获取设备指定参数,通道数由access_channel()函数决定
*MUltiChannelImage 输入多通道图像
*Image 将多输入通道输出一个图像
*Channel 通道数量,默认:1
zoom_image_factor (Image, ImageZoomed, 0.1, 0.1, ‘weighted’)
**把一个图像缩放到指定比例大小
*Image 输入图像
*ImageZoomed 输出缩放后的图像
*ScaleWidth 宽度方向的比例 [0.001,10]
*ScaleHeight 高度方向的比例 [0.001,10]
*Interpolation 篡改类型
inspect_shape_model (ImageZoomed, ModelImages, ModelRegions, 3, 20)
**创建一个轮廓模型基于金字塔的影像
*Image 输入图像
*ModelImages 输出图像基于金字塔的影像
*ModelRegions 输出模型区域
*NumLevels 使用金字塔层数
*Contrast 设置对比度
create_planar_uncalib_deformable_model (ImageZoomed, 3, 0.0, 0.0, 0.1, ScaleRMin[0], ScaleRMax[0], 0.05, 1.0, 1.0, 0.5, ‘none’, ‘use_polarity’, ‘auto’, ‘auto’, [], [], ModelID)
**创建一个(不带校正透视的)可变形模型
*Template 输入的图像模板名称,用来产生模型的图像
*NumLevels 最大的金字塔(分析法)层数,默认为: ‘auto’
*AngleStart 输入匹配时的起始角度
*AngleExtent 输入匹配时的角度范围
*AngleStep 输入匹配旋转角度的步长,默认:’auto’
*ScaleRMin y值方向的最小缩放比例
*ScaleRMax y值方向的最大缩放比例
*ScaleRStep y值方向比例缩放的步长
*ScaleCMin x值方向的最小缩放比例
*ScaleCMax x值方向的最大缩放比例
*ScaleCStep x值方向比例缩放的步长
*Optimization 设置模板优化和模板创建方法,默认:’none’
*Metric 设置匹配方法 默认: ‘use_polarity’
*Contrast 设置对比度,默认: ‘auto’
*MinContrast 输入图像中匹配物体的最小差别(对比度),默认:5
*ParamName 输入一般参数的名称,默认: ‘[]’
*ParamValue 输入一般参数值,默认:'[]’
*ModelID 输出模型句柄
Models := ModelID
*
*
*
read_image (ImageDeadEnd, ‘road_signs/dead_end_road_sign’)
*读取图像
access_channel (ImageDeadEnd, Image, Channel[1])
*设置一个图像获取设备指定参数,通道数由access_channel()函数决定
gray_closing_shape (Image, ImageClosing, 5, 5, ‘octagon’)
**关闭带选择掩码的灰度值
*Image 输入图像
*ImageClosing 输出关闭矩形掩码灰度后的图像
*MaskHeight 输入矩形掩码(滤波器)的高度 [3,511]
*MaskWidth 输入矩形掩码(滤波器)的宽度 [3,511]
*MaskShape 输入掩码的外形,默认: ‘octagon’
zoom_image_factor (ImageClosing, ImageZoomed, 0.4, 0.4, ‘weighted’)
*把一个图像缩放到指定比例大小
gen_rectangle1 (Rectangle1, 28, 71, 67, 95)
*获取一个指定大小的矩形区域
reduce_domain (ImageZoomed, Rectangle1, ImageReduced)
*只显示指定大小区域部分的图像
create_planar_uncalib_deformable_model (ImageReduced, 3, 0.0, 0.0, 0.1, ScaleRMin[1], ScaleRMax[1], 0.05, ScaleRMin[1], ScaleRMax[1], 0.1, ‘none’, ‘use_polarity’, ‘auto’, ‘auto’, [], [], ModelID)
*创建一个(不带校正透视的)可变形模型
*
* The following three lines theoretically show how to
* query specific parameters of a model.
* Practically, the derived information is not needed
* within the program.
get_deformable_model_params (ModelID, ‘angle_step’, AngleStep)
**提取一个可变形模型的参数
*ModelID 输入可变形模型句柄
*GenParamNames 输入需要提取的参数名称 默认: ‘angle_start’
*GenParamValues 输出对应的参数值
get_deformable_model_params (ModelID, ‘scale_r_step’, ScaleRStep)
*提取一个可变形模型的参数
Models := [Models,ModelID]
*
* Generate ROI in which the road signs are expected.
* We can discard not significant parts of the image, in which
* no road sign can be located.
gen_rectangle1 (Rectangle, 115, 0, 360, 640)
*获取一个指定大小的矩形区域
*
* Search in image sequence
for Index := 1 to 16 by 1
OutputString := []
TotalTime := 0
*read_image (Image, ‘road_signs/street_’ + Index$’.02′)
read_image (Image, ‘F:/halcon/road_signs/street_’+Index$’.02’+’.jpg’)
*读取图像
* We are using color images, hence the ROI of the search image
* can significantly be reduced based on the color.
determine_area_of_interest (Image, Rectangle, AreaOfInterest)
**在图像中输出可能存在目标的所有区域(该函数为不能分类的本地函数,没有帮助文档)
*Image 输入图像
*Rectangle 输入指定大小的矩形region
*AreaOfInterest 输出可能存在路标的区域
reduce_domain (Image, AreaOfInterest, ImageReduced)
*只显示指定大小区域部分的图像
dev_display (Image)
*显示图像
*
for Index2 := 0 to |Models| – 1 by 1
*
* Depending on the street sign to be found, we use different color
* channels of the image and the operator find_planar_uncalib_deformable_model
* with different parameters because of the varying dimensions of the models.
access_channel (ImageReduced, ImageChannel, Channel[Index2])
*设置一个图像获取设备指定参数,通道数由access_channel()函数决定
count_seconds (Time1)
**通过的时间,即当前时间
find_planar_uncalib_deformable_model (ImageChannel, Models[Index2], 0, 0, ScaleRMin[Index2], ScaleRMax[Index2], ScaleCMin[Index2], ScaleCMax[Index2], 0.8, 1, 0, 2, 0.4, [], [], HomMat2D, Score)
**找出图像中一个不带校正的可变形模型的最佳匹配
*Image 输入需要匹配的图像
*ModelID 输入可变性模型的句柄
**AngleStart 输入匹配时的起始角度
*AngleExtent 输入匹配时的角度范围
*AngleStep 输入匹配旋转角度的步长,默认:’auto’
*ScaleRMin y值方向的最小缩放比例
*ScaleRMax y值方向的最大缩放比例
*ScaleRStep y值方向比例缩放的步长
*ScaleCMin x值方向的最小缩放比例
*ScaleCMax x值方向的最大缩放比例
*MinScore 输入最小的匹配值(匹配质量),考虑到模板的一半被遮挡,默认 0.5
*NumMatches 在图像上找到模板的最大个数
*MaxOverlap 定义了找到的两个目标区域最多重叠的系数如果MaxOverlap=0,找到的目标区域不能存在重叠,如果MaxOverlap=1,所有找到的目标区域都要返回。
*NumLevels 搜索时使用的金字塔层数,默认值:0
*Greediness 搜索时的”贪婪程度”(0:safe but slow 慢而安全,1:fast but matches may be missed 快而可能匹配失败)[0,1]
*ParamName 输入一般参数的名称,默认: ‘[]’
*ParamValue 输入一般参数值,默认:'[]’
*HomMat2D 输入匹配过程中所需要的变换矩阵,如倾斜、反相、镜像、平移、旋转等
*Score 输出目标模型的匹配值(匹配的可信度)
count_seconds (Time2)
**通过的时间,即当前时间,通常两个相同函数配套使用
Time := Time2 – Time1
TotalTime := TotalTime + Time
*
* Display found models.
if (|HomMat2D|)
get_deformable_model_contours (ModelContours, Models[Index2], 1)
**提取一个可变形模型中对应的轮廓
*ModelContours 输出可变形模型对应的轮廓
*ModelID 输入可变形模型句柄
*Level 输入等高线所在金字塔的层数,默认:1
projective_trans_contour_xld (ModelContours, ContoursProjTrans, HomMat2D)
**对一个XLD轮廓进行射影变换
*Contours 输入需要进行射影的等高线轮廓
*ContoursProjTrans 输出被射影的等高线
*HomMat2D 输入变换矩阵
gen_region_contour_xld (ContoursProjTrans, Region, ‘filled’)
**从XLD元组中创建一个区域,该函数使用前必须先创建一个XLD(轮廓),gen_contour_polygon_xld
*Coutour 输入一个XLD
*Region 输入一个xld转换的区域
*Mode 模式,默认为 ‘filled’
union1 (Region, RegionU)
**返回输入区域的并集
*Region 输入区域
*RegionUnion 输出并集区域
area_center (RegionU, Area, R, C)
*计算区域的面积及中心坐标
get_region_runs (RegionU, Row, ColumnBegin, ColumnEnd)
**查询一个区域的扫描宽度编码
*Region 输入区域
*Row 输出扫描线的y值编号
*ColumnBegin 输出扫描线的起始x值坐标 ColumnBegin == Row
*ColumnEnd 输出扫描线的终止x值坐标 ColumnEnd == Row
H := max(Row) – min(Row)
Fac := H / HFac[Index2]
gen_circle (Circle, R, C, 45 * Fac)
*获取一个指定大小的圆形区域
dev_display (Circle)
gen_circle (Circle, R, C, 50 * Fac)
*获取一个指定大小的圆形区域
dev_display (Circle)
dev_display (ContoursProjTrans)
if (Index2 == 0)
OutputString := ‘Attention sign found in : ‘ + (Time * 1000)$’.2f’ + ‘ ms \n’
else
OutputString := ‘Dead end sign found in : ‘ + (Time * 1000)$’.2f’ + ‘ ms \n’
endif
endif
endfor
if (|OutputString| == 0)
OutputString := ‘No sign found in : ‘ + (Time * 1000)$’.2f’ + ‘ ms \n’
endif
OutputString := [‘Search for all models in: ‘ + (TotalTime * 1000)$’.2f’ + ‘ ms’,OutputString]
disp_message (WindowHandle, OutputString, ‘window’, 10, 10, ‘black’, ‘true’)
*在窗体上显示打印的信息
disp_continue_message (WindowHandle, ‘black’, ‘true’)
*在窗体上显示按F5继续运行的信息
stop ()
endfor
dev_display (Image)
disp_message (WindowHandle, ‘Program finished.\nPress \’Run\’ to clear all deformable models.’, ‘window’, 10, 10, ‘black’, ‘true’)
*在窗体上显示打印的信息
stop ()
* Clean the memory of the models.
for Index1 := 0 to 1 by 1
clear_deformable_model (Models[Index1])
**清除指定的可变形模型,释放内存空间
*ModelID 输入要清除的可变形模型句柄
endfor
* industry. A monitoring system in a car checks the sidewalk
* for roadsigns to support the driver in case of any inattention.
* To show the imaging process we focus on two road signs,
* the attention and the dead end road sign. First the models
* of both signs are generated and then detected in a street
* sequence.
*
dev_close_window ()
*关闭当前活动的窗口
* Read in model images.
* While the attention sign is from a synthetic source,
* the model for the dead end sign is from another sequence.
*read_image (ImageAttentionSign, ‘road_signs/attention_road_sign’)
* Image Acquisition 01: Code generated by Image Acquisition 01
read_image (ImageAttentionSign, ‘F:/halcon/road_signs/attention_road_sign.jpg’)
*读取图像
*read_image (ImageInit, ‘road_signs/street_01’)
* Image Acquisition 02: Code generated by Image Acquisition 02
read_image (ImageInit, ‘F:/halcon/road_signs/street_01.jpg’)
*读取图像
dev_open_window_fit_image (ImageInit, 0, 0, -1, -1, WindowHandle)
**按照指定图像的大小来打开一个窗口
*Image 输入图像名称,窗口的大小按该图像的实际大小来设定
*Row 输入窗口左上角的坐标y值,默认:0
*Column 输入窗口左上角的坐标x值,默认:0
*WidthLimit 输入宽度界限,默认: -1.该图像的最大宽度
*HeightLimit 输入高度界限,默认: -1.该图像的最大高度
*WindowHandle 输出新创建的窗口句柄
dev_update_off ()
*关闭dev_update_pc/dev_update_var/dev_update_window,停止刷新pc/变量/窗口
dev_set_line_width (2)
*设置区域,图形,XLD轮廓的线宽
dev_set_color (‘green’)
*设置区域,图形,XLD轮廓的颜色,直到下次该函数的调用更改
dev_set_draw (‘margin’)
*设置填充模式
set_display_font (WindowHandle, 14, ‘mono’, ‘true’, ‘false’)
*设置显示字体格式
*
* Some values for the later matching process are initialized
* The Attention sign has a significant red part, the
* dead end sign a blue one. Hence, we can extract the respective
* channels from the color images.
Channel := [3,1]
* In this example, we have significant scalings of the road signs.
ScaleRMin := [0.5,0.4]
ScaleRMax := [0.8,2.0]
* One could add an anisotropic scaling for the exhaustive search.
* However, this makes the detection slower and is not required here.
ScaleCMin := [1.0,1.0]
ScaleCMax := [1.0,1.0]
* Add names to the signs.
RoadSign := [‘Attention’,’Dead end’]
HFac := [47.0,50.0]
*
* Prepare the attention sign picture for the model
* creation process.
access_channel (ImageAttentionSign, Image, Channel[0])
*设置一个图像获取设备指定参数,通道数由access_channel()函数决定
*MUltiChannelImage 输入多通道图像
*Image 将多输入通道输出一个图像
*Channel 通道数量,默认:1
zoom_image_factor (Image, ImageZoomed, 0.1, 0.1, ‘weighted’)
**把一个图像缩放到指定比例大小
*Image 输入图像
*ImageZoomed 输出缩放后的图像
*ScaleWidth 宽度方向的比例 [0.001,10]
*ScaleHeight 高度方向的比例 [0.001,10]
*Interpolation 篡改类型
inspect_shape_model (ImageZoomed, ModelImages, ModelRegions, 3, 20)
**创建一个轮廓模型基于金字塔的影像
*Image 输入图像
*ModelImages 输出图像基于金字塔的影像
*ModelRegions 输出模型区域
*NumLevels 使用金字塔层数
*Contrast 设置对比度
create_planar_uncalib_deformable_model (ImageZoomed, 3, 0.0, 0.0, 0.1, ScaleRMin[0], ScaleRMax[0], 0.05, 1.0, 1.0, 0.5, ‘none’, ‘use_polarity’, ‘auto’, ‘auto’, [], [], ModelID)
**创建一个(不带校正透视的)可变形模型
*Template 输入的图像模板名称,用来产生模型的图像
*NumLevels 最大的金字塔(分析法)层数,默认为: ‘auto’
*AngleStart 输入匹配时的起始角度
*AngleExtent 输入匹配时的角度范围
*AngleStep 输入匹配旋转角度的步长,默认:’auto’
*ScaleRMin y值方向的最小缩放比例
*ScaleRMax y值方向的最大缩放比例
*ScaleRStep y值方向比例缩放的步长
*ScaleCMin x值方向的最小缩放比例
*ScaleCMax x值方向的最大缩放比例
*ScaleCStep x值方向比例缩放的步长
*Optimization 设置模板优化和模板创建方法,默认:’none’
*Metric 设置匹配方法 默认: ‘use_polarity’
*Contrast 设置对比度,默认: ‘auto’
*MinContrast 输入图像中匹配物体的最小差别(对比度),默认:5
*ParamName 输入一般参数的名称,默认: ‘[]’
*ParamValue 输入一般参数值,默认:'[]’
*ModelID 输出模型句柄
Models := ModelID
*
*
*
read_image (ImageDeadEnd, ‘road_signs/dead_end_road_sign’)
*读取图像
access_channel (ImageDeadEnd, Image, Channel[1])
*设置一个图像获取设备指定参数,通道数由access_channel()函数决定
gray_closing_shape (Image, ImageClosing, 5, 5, ‘octagon’)
**关闭带选择掩码的灰度值
*Image 输入图像
*ImageClosing 输出关闭矩形掩码灰度后的图像
*MaskHeight 输入矩形掩码(滤波器)的高度 [3,511]
*MaskWidth 输入矩形掩码(滤波器)的宽度 [3,511]
*MaskShape 输入掩码的外形,默认: ‘octagon’
zoom_image_factor (ImageClosing, ImageZoomed, 0.4, 0.4, ‘weighted’)
*把一个图像缩放到指定比例大小
gen_rectangle1 (Rectangle1, 28, 71, 67, 95)
*获取一个指定大小的矩形区域
reduce_domain (ImageZoomed, Rectangle1, ImageReduced)
*只显示指定大小区域部分的图像
create_planar_uncalib_deformable_model (ImageReduced, 3, 0.0, 0.0, 0.1, ScaleRMin[1], ScaleRMax[1], 0.05, ScaleRMin[1], ScaleRMax[1], 0.1, ‘none’, ‘use_polarity’, ‘auto’, ‘auto’, [], [], ModelID)
*创建一个(不带校正透视的)可变形模型
*
* The following three lines theoretically show how to
* query specific parameters of a model.
* Practically, the derived information is not needed
* within the program.
get_deformable_model_params (ModelID, ‘angle_step’, AngleStep)
**提取一个可变形模型的参数
*ModelID 输入可变形模型句柄
*GenParamNames 输入需要提取的参数名称 默认: ‘angle_start’
*GenParamValues 输出对应的参数值
get_deformable_model_params (ModelID, ‘scale_r_step’, ScaleRStep)
*提取一个可变形模型的参数
Models := [Models,ModelID]
*
* Generate ROI in which the road signs are expected.
* We can discard not significant parts of the image, in which
* no road sign can be located.
gen_rectangle1 (Rectangle, 115, 0, 360, 640)
*获取一个指定大小的矩形区域
*
* Search in image sequence
for Index := 1 to 16 by 1
OutputString := []
TotalTime := 0
*read_image (Image, ‘road_signs/street_’ + Index$’.02′)
read_image (Image, ‘F:/halcon/road_signs/street_’+Index$’.02’+’.jpg’)
*读取图像
* We are using color images, hence the ROI of the search image
* can significantly be reduced based on the color.
determine_area_of_interest (Image, Rectangle, AreaOfInterest)
**在图像中输出可能存在目标的所有区域(该函数为不能分类的本地函数,没有帮助文档)
*Image 输入图像
*Rectangle 输入指定大小的矩形region
*AreaOfInterest 输出可能存在路标的区域
reduce_domain (Image, AreaOfInterest, ImageReduced)
*只显示指定大小区域部分的图像
dev_display (Image)
*显示图像
*
for Index2 := 0 to |Models| – 1 by 1
*
* Depending on the street sign to be found, we use different color
* channels of the image and the operator find_planar_uncalib_deformable_model
* with different parameters because of the varying dimensions of the models.
access_channel (ImageReduced, ImageChannel, Channel[Index2])
*设置一个图像获取设备指定参数,通道数由access_channel()函数决定
count_seconds (Time1)
**通过的时间,即当前时间
find_planar_uncalib_deformable_model (ImageChannel, Models[Index2], 0, 0, ScaleRMin[Index2], ScaleRMax[Index2], ScaleCMin[Index2], ScaleCMax[Index2], 0.8, 1, 0, 2, 0.4, [], [], HomMat2D, Score)
**找出图像中一个不带校正的可变形模型的最佳匹配
*Image 输入需要匹配的图像
*ModelID 输入可变性模型的句柄
**AngleStart 输入匹配时的起始角度
*AngleExtent 输入匹配时的角度范围
*AngleStep 输入匹配旋转角度的步长,默认:’auto’
*ScaleRMin y值方向的最小缩放比例
*ScaleRMax y值方向的最大缩放比例
*ScaleRStep y值方向比例缩放的步长
*ScaleCMin x值方向的最小缩放比例
*ScaleCMax x值方向的最大缩放比例
*MinScore 输入最小的匹配值(匹配质量),考虑到模板的一半被遮挡,默认 0.5
*NumMatches 在图像上找到模板的最大个数
*MaxOverlap 定义了找到的两个目标区域最多重叠的系数如果MaxOverlap=0,找到的目标区域不能存在重叠,如果MaxOverlap=1,所有找到的目标区域都要返回。
*NumLevels 搜索时使用的金字塔层数,默认值:0
*Greediness 搜索时的”贪婪程度”(0:safe but slow 慢而安全,1:fast but matches may be missed 快而可能匹配失败)[0,1]
*ParamName 输入一般参数的名称,默认: ‘[]’
*ParamValue 输入一般参数值,默认:'[]’
*HomMat2D 输入匹配过程中所需要的变换矩阵,如倾斜、反相、镜像、平移、旋转等
*Score 输出目标模型的匹配值(匹配的可信度)
count_seconds (Time2)
**通过的时间,即当前时间,通常两个相同函数配套使用
Time := Time2 – Time1
TotalTime := TotalTime + Time
*
* Display found models.
if (|HomMat2D|)
get_deformable_model_contours (ModelContours, Models[Index2], 1)
**提取一个可变形模型中对应的轮廓
*ModelContours 输出可变形模型对应的轮廓
*ModelID 输入可变形模型句柄
*Level 输入等高线所在金字塔的层数,默认:1
projective_trans_contour_xld (ModelContours, ContoursProjTrans, HomMat2D)
**对一个XLD轮廓进行射影变换
*Contours 输入需要进行射影的等高线轮廓
*ContoursProjTrans 输出被射影的等高线
*HomMat2D 输入变换矩阵
gen_region_contour_xld (ContoursProjTrans, Region, ‘filled’)
**从XLD元组中创建一个区域,该函数使用前必须先创建一个XLD(轮廓),gen_contour_polygon_xld
*Coutour 输入一个XLD
*Region 输入一个xld转换的区域
*Mode 模式,默认为 ‘filled’
union1 (Region, RegionU)
**返回输入区域的并集
*Region 输入区域
*RegionUnion 输出并集区域
area_center (RegionU, Area, R, C)
*计算区域的面积及中心坐标
get_region_runs (RegionU, Row, ColumnBegin, ColumnEnd)
**查询一个区域的扫描宽度编码
*Region 输入区域
*Row 输出扫描线的y值编号
*ColumnBegin 输出扫描线的起始x值坐标 ColumnBegin == Row
*ColumnEnd 输出扫描线的终止x值坐标 ColumnEnd == Row
H := max(Row) – min(Row)
Fac := H / HFac[Index2]
gen_circle (Circle, R, C, 45 * Fac)
*获取一个指定大小的圆形区域
dev_display (Circle)
gen_circle (Circle, R, C, 50 * Fac)
*获取一个指定大小的圆形区域
dev_display (Circle)
dev_display (ContoursProjTrans)
if (Index2 == 0)
OutputString := ‘Attention sign found in : ‘ + (Time * 1000)$’.2f’ + ‘ ms \n’
else
OutputString := ‘Dead end sign found in : ‘ + (Time * 1000)$’.2f’ + ‘ ms \n’
endif
endif
endfor
if (|OutputString| == 0)
OutputString := ‘No sign found in : ‘ + (Time * 1000)$’.2f’ + ‘ ms \n’
endif
OutputString := [‘Search for all models in: ‘ + (TotalTime * 1000)$’.2f’ + ‘ ms’,OutputString]
disp_message (WindowHandle, OutputString, ‘window’, 10, 10, ‘black’, ‘true’)
*在窗体上显示打印的信息
disp_continue_message (WindowHandle, ‘black’, ‘true’)
*在窗体上显示按F5继续运行的信息
stop ()
endfor
dev_display (Image)
disp_message (WindowHandle, ‘Program finished.\nPress \’Run\’ to clear all deformable models.’, ‘window’, 10, 10, ‘black’, ‘true’)
*在窗体上显示打印的信息
stop ()
* Clean the memory of the models.
for Index1 := 0 to 1 by 1
clear_deformable_model (Models[Index1])
**清除指定的可变形模型,释放内存空间
*ModelID 输入要清除的可变形模型句柄
endfor