参考文章链接:Cortex-M3 / M4 Hard Fault Handler – Frank’s Random Wanderings (frankvh.com)
1.更改startup.s的启动文件
把里面的HardFault_Handler代码段换成下面的代码:
;/*********************************************************************
;*
;* Forward declarations of segments used
;*
;**********************************************************************
;*/
AREA OSKERNEL, CODE, READONLY, ALIGN=2
PRESERVE8
EXPORT HardFault_Handler
IMPORT HardFaultHandler
THUMB
;/*********************************************************************
;*
;* HardFault_Handler()
;*
;* Function description
;* Evaluates the used stack (MSP, PSP) and passes the appropiate
;* stack pointer to the HardFaultHandler "C"-routine.
;*
;* Notes
;* (1) Ensure that HardFault_Handler is part of the exception table
;*/
HardFault_Handler
;// This version is for Cortex M3, Cortex M4 and Cortex M4F
tst LR, #4 ;// Check EXC_RETURN in Link register bit 2.
ite EQ
mrseq R0, MSP ;// Stacking was using MSP.
mrsne R0, PSP ;// Stacking was using PSP.
b HardFaultHandler ;// Stack pointer passed through R0.
END
2.添加c文件,把hard_fault_handler_c函数放在c文件中,代码如下:
/*********************************************************************
*
* Defines
*
**********************************************************************
*/
#define SYSHND_CTRL (*(volatile unsigned int*) (0xE000ED24u)) // System Handler Control and State Register
#define NVIC_MFSR (*(volatile unsigned char*) (0xE000ED28u)) // Memory Management Fault Status Register
#define NVIC_BFSR (*(volatile unsigned char*) (0xE000ED29u)) // Bus Fault Status Register
#define NVIC_UFSR (*(volatile unsigned short*)(0xE000ED2Au)) // Usage Fault Status Register
#define NVIC_HFSR (*(volatile unsigned int*) (0xE000ED2Cu)) // Hard Fault Status Register
#define NVIC_DFSR (*(volatile unsigned int*) (0xE000ED30u)) // Debug Fault Status Register
#define NVIC_BFAR (*(volatile unsigned int*) (0xE000ED38u)) // Bus Fault Manage Address Register
#define NVIC_AFSR (*(volatile unsigned int*) (0xE000ED3Cu)) // Auxiliary Fault Status Register
#ifndef DEBUG // Should be overwritten by project settings
#define DEBUG (1) // in debug builds
#endif
#define ERR_INFO "\r\nEnter HardFault_Handler, System Halt.\r\n"
/*********************************************************************
*
* Prototypes
*
**********************************************************************
*/
#ifdef __cplusplus
extern "C" {
#endif
void HardFaultHandler(unsigned int* pStack);
#ifdef __cplusplus
}
#endif
/*********************************************************************
*
* Static data
*
**********************************************************************
*/
#if DEBUG
static volatile unsigned int _Continue; // Set this variable to 1 to run further
static struct {
struct {
volatile unsigned int r0; // Register R0
volatile unsigned int r1; // Register R1
volatile unsigned int r2; // Register R2
volatile unsigned int r3; // Register R3
volatile unsigned int r12; // Register R12
volatile unsigned int lr; // Link register
volatile unsigned int pc; // Program counter
union {
volatile unsigned int byte;
struct {
unsigned int IPSR : 8; // Interrupt Program Status register (IPSR)
unsigned int EPSR : 19; // Execution Program Status register (EPSR)
unsigned int APSR : 5; // Application Program Status register (APSR)
} bits;
} psr; // Program status register.
} SavedRegs;
union {
volatile unsigned int byte;
struct {
unsigned int MEMFAULTACT : 1; // Read as 1 if memory management fault is active
unsigned int BUSFAULTACT : 1; // Read as 1 if bus fault exception is active
unsigned int UnusedBits1 : 1;
unsigned int USGFAULTACT : 1; // Read as 1 if usage fault exception is active
unsigned int UnusedBits2 : 3;
unsigned int SVCALLACT : 1; // Read as 1 if SVC exception is active
unsigned int MONITORACT : 1; // Read as 1 if debug monitor exception is active
unsigned int UnusedBits3 : 1;
unsigned int PENDSVACT : 1; // Read as 1 if PendSV exception is active
unsigned int SYSTICKACT : 1; // Read as 1 if SYSTICK exception is active
unsigned int USGFAULTPENDED : 1; // Usage fault pended; usage fault started but was replaced by a higher-priority exception
unsigned int MEMFAULTPENDED : 1; // Memory management fault pended; memory management fault started but was replaced by a higher-priority exception
unsigned int BUSFAULTPENDED : 1; // Bus fault pended; bus fault handler was started but was replaced by a higher-priority exception
unsigned int SVCALLPENDED : 1; // SVC pended; SVC was started but was replaced by a higher-priority exception
unsigned int MEMFAULTENA : 1; // Memory management fault handler enable
unsigned int BUSFAULTENA : 1; // Bus fault handler enable
unsigned int USGFAULTENA : 1; // Usage fault handler enable
} bits;
} syshndctrl; // System Handler Control and State Register (0xE000ED24)
union {
volatile unsigned char byte;
struct {
unsigned char IACCVIOL : 1; // Instruction access violation
unsigned char DACCVIOL : 1; // Data access violation
unsigned char UnusedBits : 1;
unsigned char MUNSTKERR : 1; // Unstacking error
unsigned char MSTKERR : 1; // Stacking error
unsigned char UnusedBits2 : 2;
unsigned char MMARVALID : 1; // Indicates the MMAR is valid
} bits;
} mfsr; // Memory Management Fault Status Register (0xE000ED28)
union {
volatile unsigned int byte;
struct {
unsigned int IBUSERR : 1; // Instruction access violation
unsigned int PRECISERR : 1; // Precise data access violation
unsigned int IMPREISERR : 1; // Imprecise data access violation
unsigned int UNSTKERR : 1; // Unstacking error
unsigned int STKERR : 1; // Stacking error
unsigned int UnusedBits : 2;
unsigned int BFARVALID : 1; // Indicates BFAR is valid
} bits;
} bfsr; // Bus Fault Status Register (0xE000ED29)
volatile unsigned int bfar; // Bus Fault Manage Address Register (0xE000ED38)
union {
volatile unsigned short byte;
struct {
unsigned short UNDEFINSTR : 1; // Attempts to execute an undefined instruction
unsigned short INVSTATE : 1; // Attempts to switch to an invalid state (e.g., ARM)
unsigned short INVPC : 1; // Attempts to do an exception with a bad value in the EXC_RETURN number
unsigned short NOCP : 1; // Attempts to execute a coprocessor instruction
unsigned short UnusedBits : 4;
unsigned short UNALIGNED : 1; // Indicates that an unaligned access fault has taken place
unsigned short DIVBYZERO : 1; // Indicates a divide by zero has taken place (can be set only if DIV_0_TRP is set)
} bits;
} ufsr; // Usage Fault Status Register (0xE000ED2A)
union {
volatile unsigned int byte;
struct {
unsigned int UnusedBits : 1;
unsigned int VECTBL : 1; // Indicates hard fault is caused by failed vector fetch
unsigned int UnusedBits2 : 28;
unsigned int FORCED : 1; // Indicates hard fault is taken because of bus fault/memory management fault/usage fault
unsigned int DEBUGEVT : 1; // Indicates hard fault is triggered by debug event
} bits;
} hfsr; // Hard Fault Status Register (0xE000ED2C)
union {
volatile unsigned int byte;
struct {
unsigned int HALTED : 1; // Halt requested in NVIC
unsigned int BKPT : 1; // BKPT instruction executed
unsigned int DWTTRAP : 1; // DWT match occurred
unsigned int VCATCH : 1; // Vector fetch occurred
unsigned int EXTERNAL : 1; // EDBGRQ signal asserted
} bits;
} dfsr; // Debug Fault Status Register (0xE000ED30)
volatile unsigned int afsr; // Auxiliary Fault Status Register (0xE000ED3C), Vendor controlled (optional)
} HardFaultRegs;
#endif
/*********************************************************************
*
* HardFaultHandler()
*
* Function description
* C part of the hard fault handler which is called by the assembler
* function HardFault_Handler
*/
void HardFaultHandler(unsigned int* pStack) {
//
// In case we received a hard fault because of a breakpoint instruction, we return.
// This may happen when using semihosting for printf outputs and no debugger is connected,
// i.e. when running a "Debug" configuration in release mode.
//
if (NVIC_HFSR & (1u << 31)) {
NVIC_HFSR |= (1u << 31); // Reset Hard Fault status
*(pStack + 6u) += 2u; // PC is located on stack at SP + 24 bytes. Increment PC by 2 to skip break instruction.
return; // Return to interrupted application
}
#if DEBUG
//
// Read NVIC registers
//
HardFaultRegs.syshndctrl.byte = SYSHND_CTRL; // System Handler Control and State Register
HardFaultRegs.mfsr.byte = NVIC_MFSR; // Memory Fault Status Register
HardFaultRegs.bfsr.byte = NVIC_BFSR; // Bus Fault Status Register
HardFaultRegs.bfar = NVIC_BFAR; // Bus Fault Manage Address Register
HardFaultRegs.ufsr.byte = NVIC_UFSR; // Usage Fault Status Register
HardFaultRegs.hfsr.byte = NVIC_HFSR; // Hard Fault Status Register
HardFaultRegs.dfsr.byte = NVIC_DFSR; // Debug Fault Status Register
HardFaultRegs.afsr = NVIC_AFSR; // Auxiliary Fault Status Register
#if 1
{
const char *pError = ERR_INFO;
uint8_t i;
for (i = 0; i < strlen(ERR_INFO); i++)
{
USART1->TDR = pError[i];
/* 等待发送结束 */
while((USART1->ISR & USART_ISR_TC) == 0);
}
}
#endif
//
// Halt execution
// If NVIC registers indicate readable memory, change the variable value to != 0 to continue execution.
//
_Continue = 0u;
while (_Continue == 0u) {
}
//
// Read saved registers from the stack.
//
HardFaultRegs.SavedRegs.r0 = pStack[0]; // Register R0
HardFaultRegs.SavedRegs.r1 = pStack[1]; // Register R1
HardFaultRegs.SavedRegs.r2 = pStack[2]; // Register R2
HardFaultRegs.SavedRegs.r3 = pStack[3]; // Register R3
HardFaultRegs.SavedRegs.r12 = pStack[4]; // Register R12
HardFaultRegs.SavedRegs.lr = pStack[5]; // Link register LR
HardFaultRegs.SavedRegs.pc = pStack[6]; // Program counter PC
HardFaultRegs.SavedRegs.psr.byte = pStack[7]; // Program status word PSR
//
// Halt execution
// To step out of the HardFaultHandler, change the variable value to != 0.
//
_Continue = 0u;
while (_Continue == 0u) {
}
#else
//
// If this module is included in a release configuration, simply stay in the HardFault handler
//
(void)pStack;
do {
} while (1);
#endif
}
3.Fault 出错原因。
为了解释所述的 Fault 中断处理程序的原理,这里重述一下当系统产生异常时 MCU 的处理过程:
· 有一个压栈的过程,若产生异常时使用 PSP(进程栈指针),就压入到 PSP 中,若产生异常时使用MSP(主栈指针),就压入MSP 中。
· 会根据处理器的模式和使用的堆栈,设置 LR 的值(当然设置完的LR 的值再压栈)。
· 异常保存,硬件自动把 8 个寄存器的值压入堆栈(8 个寄存器依次为 xPSR、PC、LR、R12以及 R3~R0)。如果异常发生时,当前的代码正在使用PSP,则上面8 个寄存器压入PSP; 否则就压入MSP。
当系统产生异常时,我们需要两个关键寄存器值,一个是 PC ,一个是 LR (链接寄存器),通过 LR找到相应的堆栈,再通过堆栈找到触发异常的PC 值。将产生异常时压入栈的 PC 值取出,并与反汇编的代码对比就能得到哪条指令产生了异常。
这里解释一下关于 LR 寄存器的工作原理。如上所述,当 Cortex-M4 处理器接受了一个异常后,寄存器组中的一些寄存器值会被自动压入当前栈空间里,这其中就包括链接寄存器(LR )。这时的 LR 会被更新为异常返回时需要使用的特殊值(EXC_RETURN)。
关于EXC_RETURN 的定义如下,其为 32 位数值,高 28 位置 1,第 0 位到第三位则提供了异常返回机制所需的信息,如下表所示。可见其中第 2 位标示着进入异常前使用的栈是 MSP还是PSP。在异常处理过程结束时,MCU 需要根据该值来分配 SP 的值。这也是本方法中用来判断所使用堆栈的原理,其实现方法可以从后面HardFaultHandler 中看到。
4.参考文章:
Cortex-M3 处理器 – 流水灯 – 博客园 (cnblogs.com)