linux serial构架分析及驱动开发

  • Post author:
  • Post category:linux


前面介绍了tty核心分析及tty驱动开发的方法,tty设备包括串口、终端、伪终端三大类,其中终端和伪终端驱动内核都帮我们实现好了,很少需要改动。因此我们主要介绍串口驱动的开发及其在内核中的构架(其核心实现源码主要在/drivers/serial_core.c中),这一节中我们主要分析向内核中加入一个serial驱动用到的数据结构。


serial core是构建在tty core之上的。注册一个串口驱动即在tty core层注册一个tty驱动。下面我们看看串口驱动中用到的两个最重要的数据机构 struct uart_driver 表示一个serial驱动,struct uart_port 表示一个串口端口。


struct uart_driver {


struct module  *owner;

const char  *driver_name;

//驱动名称


const char  *dev_name;

//设备名基础


int    major;

//主设备号


int    minor;

//起始次设备号


int    nr;

//设备个数


struct console  *cons;

//关联的控制台


/*

* these are private; the low level driver should not

* touch these; they should be initialised to NULL

*/

struct uart_state *state;

//串口驱动操作设备数组


struct tty_driver *tty_driver;

//表征串口驱动的tty驱动


};



上面结构中struct uart_state *state指向驱动操作的串口设备相关数据结构,其中struct uart_port *port就是我们下面要介绍的描述串口设备的结构,struct uart_info *info 指向相关联的struct tty_struct 结构和数据发射时环形缓冲区struct circ_buf xmit,即串口打开时的描述信息。uart_info有两个成员在底层串口驱动会用到:xmit和tty。用户空间程序通过串口发送数据时,上层驱动将用户数据保存在xmit;而串口发送中断处理函数就是通过xmit获取到用户数据并将它们发送出去。串口接收中断处理函数需要通过tty将接收到的数据传递给行规则层。具体的成员分析我们在后面介绍具体的操作时再分析。


struct uart_port {


spinlock_t  lock;   /* port lock */

//串口端口锁


unsigned int  iobase;   /* in/out[bwl] */

//io端口基地址


unsigned char __iomem *membase;  /* read/write[bwl] */

//io内存基地址,虚拟地址


unsigned int  irq;   /* irq number */

//中断号


unsigned int  uartclk;  /* base uart clock */

//串口时钟


unsigned int  fifosize;  /* tx fifo size */

//串口fifo缓冲大小


unsigned char  x_char;   /* xon/xoff char */

//xon/xoff字符


unsigned char  regshift;  /* reg offset shift */

//j寄存器移位


unsigned char  iotype;   /* io access style */

//io访问方式


unsigned char  unused1;



#define UPIO_PORT  (0)

//端口


#define UPIO_HUB6  (1)

#define UPIO_MEM  (2)

//内存


#define UPIO_MEM32  (3)

#define UPIO_AU   (4)   /* Au1x00 type IO */

#define UPIO_TSI  (5)   /* Tsi108/109 type IO */

#define UPIO_DWAPB  (6)   /* DesignWare APB UART */

#define UPIO_RM9000  (7)   /* RM9000 type IO */



unsigned int  read_status_mask; /* driver specific */

//关心的rx error status


unsigned int  ignore_status_mask; /* driver specific */

//忽略的rx error status


struct uart_info *info;   /* pointer to parent info */

struct uart_icount icount;   /* statistics */



struct console  *cons;   /* struct console, if any */

#ifdef CONFIG_SERIAL_CORE_CONSOLE

unsigned long  sysrq;   /* sysrq timeout */

#endif



upf_t   flags;



#define UPF_FOURPORT  ((__force upf_t) (1 << 1))

#define UPF_SAK   ((__force upf_t) (1 << 2))

#define UPF_SPD_MASK  ((__force upf_t) (0x1030))

#define UPF_SPD_HI  ((__force upf_t) (0x0010))

#define UPF_SPD_VHI  ((__force upf_t) (0x0020))

#define UPF_SPD_CUST  ((__force upf_t) (0x0030))

#define UPF_SPD_SHI  ((__force upf_t) (0x1000))

#define UPF_SPD_WARP  ((__force upf_t) (0x1010))

#define UPF_SKIP_TEST  ((__force upf_t) (1 << 6))

#define UPF_AUTO_IRQ  ((__force upf_t) (1 << 7))

#define UPF_HARDPPS_CD  ((__force upf_t) (1 << 11))

#define UPF_LOW_LATENCY  ((__force upf_t) (1 << 13))

#define UPF_BUGGY_UART  ((__force upf_t) (1 << 14))

#define UPF_MAGIC_MULTIPLIER ((__force upf_t) (1 << 16))

#define UPF_CONS_FLOW  ((__force upf_t) (1 << 23))

#define UPF_SHARE_IRQ  ((__force upf_t) (1 << 24))

#define UPF_BOOT_AUTOCONF ((__force upf_t) (1 << 28))

#define UPF_FIXED_PORT  ((__force upf_t) (1 << 29))

#define UPF_DEAD  ((__force upf_t) (1 << 30))

#define UPF_IOREMAP  ((__force upf_t) (1 << 31))



#define UPF_CHANGE_MASK  ((__force upf_t) (0x17fff))

#define UPF_USR_MASK  ((__force upf_t) (UPF_SPD_MASK|UPF_LOW_LATENCY))



unsigned int  mctrl;   /* current modem ctrl settings */

unsigned int  timeout;  /* character-based timeout */

unsigned int  type;   /* port type */

const struct uart_ops *ops;

//具体端口的相关操作函数


unsigned int  custom_divisor;

unsigned int  line;

/* port index */


resource_size_t  mapbase;  /* for ioremap */

//io内存物理地址


struct device  *dev;   /* parent device */

unsigned char  hub6;   /* this should be in the 8250 driver */

unsigned char  suspended;

unsigned char  unused[2];

//允许串口收发字符标志


void   *private_data;  /* generic platform data pointer */

};



uart_iconut为串口信息计数器,包含了发送字符计数、接收字符计数等。在串口的发送中断处理函数和接收中断处理函数中,我们需要管理这些计数。

struct uart_icount {


__u32 cts;

__u32 dsr;

__u32 rng;

__u32 dcd;

__u32 rx;

//接收字符数


__u32 tx;

//发送字符数


__u32 frame;

//错误帧计数


__u32 overrun;

//rx fifo溢出计数


__u32 parity;

//帧校验错误计数


__u32 brk;

//break计数


__u32 buf_overrun;

};



对于实现一个串口驱动,主要的工作量就是实现struct uart_ops *ops中的各个操作函数。


* This structure describes all the operations that can be

* done on the physical hardware.

*/

struct uart_ops {


unsigned int (*tx_empty)(struct uart_port *);

//串口tx FIFO缓存是否为空


void  (*set_mctrl)(struct uart_port *, unsigned int mctrl);

//设置串口modem控制


unsigned int (*get_mctrl)(struct uart_port *);

//获得串口的modem控制


void  (*stop_tx)(struct uart_port *);

//停止串口发送


void  (*start_tx)(struct uart_port *);

//使能串口发送


void  (*send_xchar)(struct uart_port *, char ch);

//发送xchar


void  (*stop_rx)(struct uart_port *);

//禁止串口接收


void  (*enable_ms)(struct uart_port *);

//使能modem状态信号


void  (*break_ctl)(struct uart_port *, int ctl);

//设置break信号


int  (*startup)(struct uart_port *);

//启动串口


void  (*shutdown)(struct uart_port *);

//关闭串口


void  (*flush_buffer)(struct uart_port *);

//刷新缓存


void  (*set_termios)(struct uart_port *, struct ktermios *new,

struct ktermios *old);

//设置串口参数


void  (*set_ldisc)(struct uart_port *);

//设置线路规程


void  (*pm)(struct uart_port *, unsigned int state,

unsigned int oldstate);

//电源管理


int  (*set_wake)(struct uart_port *, unsigned int state);




/*

* Return a string describing the type of the port

*/

const char *(*type)(struct uart_port *);





/*

* Release IO and memory resources used by the port.

* This includes iounmap if necessary.

*/

void  (*release_port)(struct uart_port *);





/*

* Request IO and memory resources used by the port.

* This includes iomapping the port if necessary.

*/

int  (*request_port)(struct uart_port *);

void  (*config_port)(struct uart_port *, int);

//执行串口所需的自动配置


int  (*verify_port)(struct uart_port *, struct serial_struct *);

//核实串口信息


int  (*ioctl)(struct uart_port *, unsigned int, unsigned long);

#ifdef CONFIG_CONSOLE_POLL

void (*poll_put_char)(struct uart_port *, unsigned char);

int  (*poll_get_char)(struct uart_port *);

#endif

};










上节介绍了serial驱动核心提供的重要数据结构,这一节将介绍serial核心提供给驱动开发的核心函数uart_register_driver向内核注册serial驱动(具体操作就是向内核注册一个tty_driver)以及uart_unregister_driver注销serial驱动。uart_add_one_port用于为串口驱动添加一个串口端口(在总线型设备驱动中,通常用于探测函数probe中),uart_remove_one_port用于删除一个已经添加到驱动中的串口端口(通常在卸载函数中调用)。



//uart_register_driver就是初始化一个tty_driver并把其加入tty core层,并对uart_state做一些初始化,起始就是写一个tty类驱动。


/**

* uart_register_driver – register a driver with the uart core layer

* @drv: low level driver structure

*

* Register a uart driver with the core driver.  We in turn register

* with the tty layer, and initialise the core driver per-port state.

*

* We have a proc file in /proc/tty/driver which is named after the

* normal driver.

*

* drv->port should be NULL, and the per-port structures should be

* registered using uart_add_one_port after this call has succeeded.

*/

int uart_register_driver(struct uart_driver *drv)

{


struct tty_driver *normal = NULL;

//定义一个tty_driver驱动指针


int i, retval;


BUG_ON(drv->state);


/*

* Maybe we should be using a slab cache for this, especially if

* we have a large number of ports to handle.

*/

drv->state = kzalloc(sizeof(struct uart_state) * drv->nr, GFP_KERNEL);

//为串口设备管理分配空间即uart_state数组


retval = -ENOMEM;

if (!drv->state)

goto out;


normal  = alloc_tty_driver(drv->nr);

if (!normal)

goto out;


drv->tty_driver = normal;


normal->owner  = drv->owner;

normal->driver_name = drv->driver_name;

normal->name  = drv->dev_name;

normal->major  = drv->major;

normal->minor_start = drv->minor;

normal->type  = TTY_DRIVER_TYPE_SERIAL;

//tty设备类型


normal->subtype  = SERIAL_TYPE_NORMAL;

//tty设备子类型


normal->init_termios = tty_std_termios;

normal->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL;

//串口默认控制参数


normal->init_termios.c_ispeed = normal->init_termios.c_ospeed = 9600;


//TTY_DRIVER_DYNAMIC_DEV是不会在初始化的时候去注册device.也就是说在/dev/下没有动态生成结点


normal->flags  = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;

normal->driver_state    = drv;

//便于查找uart_driver


tty_set_operations(normal, &uart_ops);


/*

* Initialise the UART state(s).

*/

for (i = 0; i < drv->nr; i++) {


struct uart_state *state = drv->state + i;


state->close_delay     = 500; /* .5 seconds */

state->closing_wait    = 30000; /* 30 seconds */


mutex_init(&state->mutex);

}


retval = tty_register_driver(normal); //把normal加入到tty core中

out:

if (retval < 0) {


put_tty_driver(normal);

kfree(drv->state);

}

return retval;

}


//uart_unregister_driver完成与上面代码相反的操作

/**

* uart_unregister_driver – remove a driver from the uart core layer

* @drv: low level driver structure

*

* Remove all references to a driver from the core driver.  The low

* level driver must have removed all its ports via the

* uart_remove_one_port() if it registered them with uart_add_one_port().

* (ie, drv->port == NULL)

*/

void uart_unregister_driver(struct uart_driver *drv)

{


struct tty_driver *p = drv->tty_driver;

tty_unregister_driver(p);

put_tty_driver(p);

kfree(drv->state);

drv->tty_driver = NULL;

}


//uart_add_one_port 向uart_driver加入一个可操作的端口,注意serial驱动的核心在端口的操作函数上


//即const struct uart_ops *ops的成员函数上,每个端口对应一个uart_state结构

/**

* uart_add_one_port – attach a driver-defined port structure

* @drv: pointer to the uart low level driver structure for this port

* @port: uart port structure to use for this port.

*

* This allows the driver to register its own uart_port structure

* with the core driver.  The main purpose is to allow the low

* level uart drivers to expand uart_port, rather than having yet

* more levels of structures.

*/

int uart_add_one_port(struct uart_driver *drv, struct uart_port *port)

{


struct uart_state *state;

int ret = 0;

struct device *tty_dev;

BUG_ON(in_interrupt());

//函数不能在中断环境中调用

if (port->line >= drv->nr)

//port->line 指在uart_state数组中的索引


return -EINVAL;

state = drv->state + port->line;

mutex_lock(&port_mutex);

mutex_lock(&state->mutex);

if (state->port) {


ret = -EINVAL;

goto out;

}

state->port = port;

state->pm_state = -1;

port->cons = drv->cons;

port->info = state->info;

//两者指向同一个uart_info结构

/*

* If this port is a console, then the spinlock is already

* initialised.

*/

if (!(uart_console(port) && (port->cons->flags & CON_ENABLED))) {


spin_lock_init(&port->lock);

lockdep_set_class(&port->lock, &port_lock_key);

}

uart_configure_port(drv, state, port);

//配置端口 下面具体分析

/*

* Register the port whether it’s detected or not.  This allows

* setserial to be used to alter this ports parameters.

*/

tty_dev = tty_register_device(drv->tty_driver, port->line, port->dev);

//注册tty设备


if (likely(!IS_ERR(tty_dev))) {

//设置设备的唤醒状态


device_init_wakeup(tty_dev, 1);

device_set_wakeup_enable(tty_dev, 0);

} else

printk(KERN_ERR “Cannot register tty device on line %d/n”,

port->line);

/*

* Ensure UPF_DEAD is not set.

*/

port->flags &= ~UPF_DEAD;

out:

mutex_unlock(&state->mutex);

mutex_unlock(&port_mutex);

return ret;

}


//端口为配置的情况下调用端口的自动配置函数,否则直接报告端口信息以及modem控制设置等操作

static void uart_configure_port(struct uart_driver *drv, struct uart_state *state,

struct uart_port *port)

{


unsigned int flags;

/*

* If there isn’t a port here, don’t do anything further.

*/

if (!port->iobase && !port->mapbase && !port->membase)

//设备不存在


return;

/*

* Now do the auto configuration stuff.  Note that config_port

* is expected to claim the resources and map the port for us.

*/

flags = UART_CONFIG_TYPE;

if (port->flags & UPF_AUTO_IRQ)

flags |= UART_CONFIG_IRQ;

if (port->flags & UPF_BOOT_AUTOCONF) {


port->type = PORT_UNKNOWN;

port->ops->config_port(port, flags);

//调用设备的自动配置函数,在后面的serial驱动例子中可以看看具体看什么


}

if (port->type != PORT_UNKNOWN) {


unsigned long flags;

uart_report_port(drv, port);

//输出端口的相关信息

/* Power up port for set_mctrl() */

uart_change_pm(state, 0);

//改变端口的电源状态

/*

* Ensure that the modem control lines are de-activated.

* keep the DTR setting that is set in uart_set_options()

* We probably don’t need a spinlock around this, but

*/

spin_lock_irqsave(&port->lock, flags);

port->ops->set_mctrl(port, port->mctrl & TIOCM_DTR);

//设置串口modem控制


spin_unlock_irqrestore(&port->lock, flags);

/*

* If this driver supports console, and it hasn’t been

* successfully registered yet, try to re-register it.

* It may be that the port was not available.

*/

if (port->cons && !(port->cons->flags & CON_ENABLED))

register_console(port->cons);

/*

* Power down all ports by default, except the

* console if we have one.

*/

if (!uart_console(port))

uart_change_pm(state, 3);

}

}


//uart_remove_one_port完成uart_add_one_port相反操作,删除一个已加入的串口端口

/**

* uart_remove_one_port – detach a driver defined port structure

* @drv: pointer to the uart low level driver structure for this port

* @port: uart port structure for this port

*

* This unhooks (and hangs up) the specified port structure from the

* core driver.  No further calls will be made to the low-level code

* for this port.

*/

int uart_remove_one_port(struct uart_driver *drv, struct uart_port *port)

{


struct uart_state *state = drv->state + port->line;

struct uart_info *info;

BUG_ON(in_interrupt());

if (state->port != port)

//删除端口与驱动对应端口不匹配


printk(KERN_ALERT “Removing wrong port: %p != %p/n”,

state->port, port);

mutex_lock(&port_mutex);

/*

* Mark the port “dead” – this prevents any opens from

* succeeding while we shut down the port.

*/

mutex_lock(&state->mutex);

port->flags |= UPF_DEAD;

//设置端口不可用标志


mutex_unlock(&state->mutex);

/*

* Remove the devices from the tty layer

*/

tty_unregister_device(drv->tty_driver, port->line);

//端口对应设备从内核注销掉

info = state->info;

if (info && info->port.tty)

tty_vhangup(info->port.tty

);//处理tty挂起相关操作do_tty_hungup函数

/*

* All users of this port should now be disconnected from

* this driver, and the port shut down.  We should be the

* only thread fiddling with this port from now on.

*/

state->info = NULL;

/*

* Free the port IO and memory resources, if any.

*/

if (port->type != PORT_UNKNOWN)

port->ops->release_port(port);

//释放端口资源

/*

* Indicate that there isn’t a port here anymore.

*/

port->type = PORT_UNKNOWN;

/*

* Kill the tasklet, and free resources.

*/

if (info) {


tasklet_kill(&info->tlet);//下半部机制确保tasklet不再被调用

kfree(info);

}

state->port = NULL;

mutex_unlock(&port_mutex);

return 0;

}


这一节我们将介绍一个serial驱动的实例,后面各节中也将以这个例子来分析串口各种操作的实际情景(例子是at91sam9260板子的串口驱动)。


该驱动将串口看作平台(platform)设备。platform可以看作一伪总线,用于将集成于片上系统的轻量级设备与Linux设备驱动模型联系到一起,它包含以下两部分(有关platform的声明都在#include <linux/platform_device.h>,具体实现在drivers/base/platform.c):
1、platform设备。我们需要为每个设备定义一个platform_device实例





struct

platform_device

{




const


char


*

name

;


/* 设备名 */



int

id

;


/* 设备的id号 */



struct

device    dev

;


/* 其对应的device */


u32              num_resources

;


/* 该设备用有的资源数 */



struct

resource

*

resource

;


/* 资源数组 */



}


;



为我们的设备创建platform_device实例有两种方法:填充一个platform_device结构体后用

platform_device_register(一次注册一个)或platform_add_devices(一次可以注册多个platform设备)将


platform_device注册到内核;更简单的是使用platform_device_register_simple来建立并注册我们的platform_device。

2、platform驱动。platform设备由platform驱动进行管理。当设备加入到系统中时,platform_driver的probe方法会被调用来见对应的设备添加或者注册到内核;当设备从系统中移除时,platform_driver的remove方法会被调用来做一些清理工作,如移除该设备的一些实例、注销一些已注册到系统中去的东西。





struct

platform_driver

{




int


(


*

probe

)


(


struct

platform_device

*


)


;



int


(


*


remove


)


(


struct

platform_device

*


)


;



void


(


*


shutdown


)


(


struct

platform_device

*


)


;



int


(


*

suspend

)


(


struct

platform_device

*


,

pm_message_t state

)


;



int


(


*

suspend_late

)


(


struct

platform_device

*


,

pm_message_t state

)


;



int


(


*

resume_early

)


(


struct

platform_device

*


)


;



int


(


*

resume

)


(


struct

platform_device

*


)


;



struct

device_driver driver

;



}


;



更详细platform资料可参考网上相关文章。


/*

*  linux/drivers/char/atmel_serial.c

*

*  Driver for Atmel AT91 / AT32 Serial ports

*  Copyright (C) 2003 Rick Bronson

*

*  Based on drivers/char/serial_sa1100.c, by Deep Blue Solutions Ltd.

*  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts’o.

*

*  DMA support added by Chip Coldwell.

*

* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program; if not, write to the Free Software

* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

*

*/

#include <linux/module.h>

#include <linux/tty.h>

#include <linux/ioport.h>

#include <linux/slab.h>

#include <linux/init.h>

#include <linux/serial.h>

#include <linux/clk.h>

#include <linux/console.h>

#include <linux/sysrq.h>

#include <linux/tty_flip.h>

#include <linux/platform_device.h>

#include <linux/dma-mapping.h>

#include <linux/atmel_pdc.h>

#include <linux/atmel_serial.h>


#include <asm/io.h>


#include <asm/mach/serial_at91.h>

#include <mach/board.h>


#ifdef CONFIG_ARM

#include <mach/cpu.h>

#include <mach/gpio.h>

#endif


#define PDC_BUFFER_SIZE  512

/* Revisit: We should calculate this based on the actual port settings */

#define PDC_RX_TIMEOUT  (3 * 10)  /* 3 bytes */


#if defined(CONFIG_SERIAL_ATMEL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)

#define SUPPORT_SYSRQ

#endif


#include <linux/serial_core.h>


#ifdef CONFIG_SERIAL_ATMEL_TTYAT


/* Use device name ttyAT, major 204 and minor 154-169.  This is necessary if we

* should coexist with the 8250 driver, such as if we have an external 16C550

* UART. */

#define SERIAL_ATMEL_MAJOR 204

#define MINOR_START  154

#define ATMEL_DEVICENAME “ttyAT”


#else


/* Use device name ttyS, major 4, minor 64-68.  This is the usual serial port

* name, but it is legally reserved for the 8250 driver. */

#define SERIAL_ATMEL_MAJOR TTY_MAJOR

#define MINOR_START  64

#define ATMEL_DEVICENAME “ttyS”


#endif


#define ATMEL_ISR_PASS_LIMIT 256


/* UART registers. CR is write-only, hence no GET macro */

#define UART_PUT_CR(port,v) __raw_writel(v, (port)->membase + ATMEL_US_CR)

#define UART_GET_MR(port) __raw_readl((port)->membase + ATMEL_US_MR)

#define UART_PUT_MR(port,v) __raw_writel(v, (port)->membase + ATMEL_US_MR)

#define UART_PUT_IER(port,v) __raw_writel(v, (port)->membase + ATMEL_US_IER)

#define UART_PUT_IDR(port,v) __raw_writel(v, (port)->membase + ATMEL_US_IDR)

#define UART_GET_IMR(port) __raw_readl((port)->membase + ATMEL_US_IMR)

#define UART_GET_CSR(port) __raw_readl((port)->membase + ATMEL_US_CSR)

#define UART_GET_CHAR(port) __raw_readl((port)->membase + ATMEL_US_RHR)

#define UART_PUT_CHAR(port,v) __raw_writel(v, (port)->membase + ATMEL_US_THR)

#define UART_GET_BRGR(port) __raw_readl((port)->membase + ATMEL_US_BRGR)

#define UART_PUT_BRGR(port,v) __raw_writel(v, (port)->membase + ATMEL_US_BRGR)

#define UART_PUT_RTOR(port,v) __raw_writel(v, (port)->membase + ATMEL_US_RTOR)


/* PDC registers */

#define UART_PUT_PTCR(port,v) __raw_writel(v, (port)->membase + ATMEL_PDC_PTCR)

#define UART_GET_PTSR(port) __raw_readl((port)->membase + ATMEL_PDC_PTSR)


#define UART_PUT_RPR(port,v) __raw_writel(v, (port)->membase + ATMEL_PDC_RPR)

#define UART_GET_RPR(port) __raw_readl((port)->membase + ATMEL_PDC_RPR)

#define UART_PUT_RCR(port,v) __raw_writel(v, (port)->membase + ATMEL_PDC_RCR)

#define UART_PUT_RNPR(port,v) __raw_writel(v, (port)->membase + ATMEL_PDC_RNPR)

#define UART_PUT_RNCR(port,v) __raw_writel(v, (port)->membase + ATMEL_PDC_RNCR)


#define UART_PUT_TPR(port,v) __raw_writel(v, (port)->membase + ATMEL_PDC_TPR)

#define UART_PUT_TCR(port,v) __raw_writel(v, (port)->membase + ATMEL_PDC_TCR)

#define UART_GET_TCR(port) __raw_readl((port)->membase + ATMEL_PDC_TCR)


static int (*atmel_open_hook)(struct uart_port *);

static void (*atmel_close_hook)(struct uart_port *);


struct atmel_dma_buffer {


unsigned char *buf;

dma_addr_t dma_addr;

unsigned int dma_size;

unsigned int ofs;

};


struct atmel_uart_char {


u16  status;

u16  ch;

};


#define ATMEL_SERIAL_RINGSIZE 1024


/*

* We wrap our port structure around the generic uart_port.

*/

struct atmel_uart_port {


struct uart_port uart;  /* uart */

struct clk  *clk;  /* uart clock */

int   may_wakeup; /* cached value of device_may_wakeup for times we need to disable it */

u32   backup_imr; /* IMR saved during suspend */

int   break_active; /* break being received */


short   use_dma_rx; /* enable PDC receiver */

short   pdc_rx_idx; /* current PDC RX buffer */

struct atmel_dma_buffer pdc_rx[2]; /* PDC receier */


short   use_dma_tx; /* enable PDC transmitter */

struct atmel_dma_buffer pdc_tx;  /* PDC transmitter */


struct tasklet_struct tasklet;

unsigned int  irq_status;

unsigned int  irq_status_prev;


struct circ_buf  rx_ring;

};


static struct atmel_uart_port atmel_ports[ATMEL_MAX_UART];


#ifdef SUPPORT_SYSRQ

static struct console atmel_console;

#endif


static inline struct atmel_uart_port *

to_atmel_uart_port(struct uart_port *uart)

{


return container_of(uart, struct atmel_uart_port, uart);

}


#ifdef CONFIG_SERIAL_ATMEL_PDC

static bool atmel_use_dma_rx(struct uart_port *port)

{


struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);


return atmel_port->use_dma_rx;

}


static bool atmel_use_dma_tx(struct uart_port *port)

{


struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);


return atmel_port->use_dma_tx;

}

#else

static bool atmel_use_dma_rx(struct uart_port *port)

{


return false;

}


static bool atmel_use_dma_tx(struct uart_port *port)

{


return false;

}

#endif


/*

* Return TIOCSER_TEMT when transmitter FIFO and Shift register is empty.

*/

static u_int atmel_tx_empty(struct uart_port *port)

{


return (UART_GET_CSR(port) & ATMEL_US_TXEMPTY) ? TIOCSER_TEMT : 0;

}


/*

* Set state of the modem control output lines

*/

static void atmel_set_mctrl(struct uart_port *port, u_int mctrl)

{


unsigned int control = 0;

unsigned int mode;


#ifdef CONFIG_ARCH_AT91RM9200

if (cpu_is_at91rm9200()) {


/*

* AT91RM9200 Errata #39: RTS0 is not internally connected

* to PA21. We need to drive the pin manually.

*/

if (port->mapbase == AT91RM9200_BASE_US0) {


if (mctrl & TIOCM_RTS)

at91_set_gpio_value(AT91_PIN_PA21, 0);

else

at91_set_gpio_value(AT91_PIN_PA21, 1);

}

}

#endif


if (mctrl & TIOCM_RTS)

control |= ATMEL_US_RTSEN;

else

control |= ATMEL_US_RTSDIS;


if (mctrl & TIOCM_DTR)

control |= ATMEL_US_DTREN;

else

control |= ATMEL_US_DTRDIS;


UART_PUT_CR(port, control);


/* Local loopback mode? */

mode = UART_GET_MR(port) & ~ATMEL_US_CHMODE;

if (mctrl & TIOCM_LOOP)

mode |= ATMEL_US_CHMODE_LOC_LOOP;

else

mode |= ATMEL_US_CHMODE_NORMAL;

UART_PUT_MR(port, mode);

}


/*

* Get state of the modem control input lines

*/

static u_int atmel_get_mctrl(struct uart_port *port)

{


unsigned int status, ret = 0;


status = UART_GET_CSR(port);


/*

* The control signals are active low.

*/

if (!(status & ATMEL_US_DCD))

ret |= TIOCM_CD;

if (!(status & ATMEL_US_CTS))

ret |= TIOCM_CTS;

if (!(status & ATMEL_US_DSR))

ret |= TIOCM_DSR;

if (!(status & ATMEL_US_RI))

ret |= TIOCM_RI;


return ret;

}


/*

* Stop transmitting.

*/

static void atmel_stop_tx(struct uart_port *port)

{


if (atmel_use_dma_tx(port)) {


/* disable PDC transmit */

UART_PUT_PTCR(port, ATMEL_PDC_TXTDIS);

UART_PUT_IDR(port, ATMEL_US_ENDTX | ATMEL_US_TXBUFE);

} else

UART_PUT_IDR(port, ATMEL_US_TXRDY);

}


/*

* Start transmitting.

*/

static void atmel_start_tx(struct uart_port *port)

{


if (atmel_use_dma_tx(port)) {


if (UART_GET_PTSR(port) & ATMEL_PDC_TXTEN)

/* The transmitter is already running.  Yes, we

really need this.*/

return;


UART_PUT_IER(port, ATMEL_US_ENDTX | ATMEL_US_TXBUFE);

/* re-enable PDC transmit */

UART_PUT_PTCR(port, ATMEL_PDC_TXTEN);

} else

UART_PUT_IER(port, ATMEL_US_TXRDY);

}


/*

* Stop receiving – port is in process of being closed.

*/

static void atmel_stop_rx(struct uart_port *port)

{


if (atmel_use_dma_rx(port)) {


/* disable PDC receive */

UART_PUT_PTCR(port, ATMEL_PDC_RXTDIS);

UART_PUT_IDR(port, ATMEL_US_ENDRX | ATMEL_US_TIMEOUT);

} else

UART_PUT_IDR(port, ATMEL_US_RXRDY);

}


/*

* Enable modem status interrupts

*/

static void atmel_enable_ms(struct uart_port *port)

{


UART_PUT_IER(port, ATMEL_US_RIIC | ATMEL_US_DSRIC

| ATMEL_US_DCDIC | ATMEL_US_CTSIC);

}


/*

* Control the transmission of a break signal

*/

static void atmel_break_ctl(struct uart_port *port, int break_state)

{


if (break_state != 0)

UART_PUT_CR(port, ATMEL_US_STTBRK); /* start break */

else

UART_PUT_CR(port, ATMEL_US_STPBRK); /* stop break */

}


/*

* Stores the incoming character in the ring buffer

*/

static void

atmel_buffer_rx_char(struct uart_port *port, unsigned int status,

unsigned int ch)

{


struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);

struct circ_buf *ring = &atmel_port->rx_ring;

struct atmel_uart_char *c;


if (!CIRC_SPACE(ring->head, ring->tail, ATMEL_SERIAL_RINGSIZE))

/* Buffer overflow, ignore char */

return;


c = &((struct atmel_uart_char *)ring->buf)[ring->head];

c->status = status;

c->ch  = ch;


/* Make sure the character is stored before we update head. */

smp_wmb();


ring->head = (ring->head + 1) & (ATMEL_SERIAL_RINGSIZE – 1);

}


/*

* Deal with parity, framing and overrun errors.

*/

static void atmel_pdc_rxerr(struct uart_port *port, unsigned int status)

{


/* clear error */

UART_PUT_CR(port, ATMEL_US_RSTSTA);


if (status & ATMEL_US_RXBRK) {


/* ignore side-effect */

status &= ~(ATMEL_US_PARE | ATMEL_US_FRAME);

port->icount.brk++;

}

if (status & ATMEL_US_PARE)

port->icount.parity++;

if (status & ATMEL_US_FRAME)

port->icount.frame++;

if (status & ATMEL_US_OVRE)

port->icount.overrun++;

}


/*

* Characters received (called from interrupt handler)

*/

static void atmel_rx_chars(struct uart_port *port)

{


struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);

unsigned int status, ch;


status = UART_GET_CSR(port);

while (status & ATMEL_US_RXRDY) {


ch = UART_GET_CHAR(port);


/*

* note that the error handling code is

* out of the main execution path

*/

if (unlikely(status & (ATMEL_US_PARE | ATMEL_US_FRAME

| ATMEL_US_OVRE | ATMEL_US_RXBRK)

|| atmel_port->break_active)) {


/* clear error */

UART_PUT_CR(port, ATMEL_US_RSTSTA);


if (status & ATMEL_US_RXBRK

&& !atmel_port->break_active) {


atmel_port->break_active = 1;

UART_PUT_IER(port, ATMEL_US_RXBRK);

} else {


/*

* This is either the end-of-break

* condition or we’ve received at

* least one character without RXBRK

* being set. In both cases, the next

* RXBRK will indicate start-of-break.

*/

UART_PUT_IDR(port, ATMEL_US_RXBRK);

status &= ~ATMEL_US_RXBRK;

atmel_port->break_active = 0;

}

}


atmel_buffer_rx_char(port, status, ch);

status = UART_GET_CSR(port);

}


tasklet_schedule(&atmel_port->tasklet);

}


/*

* Transmit characters (called from tasklet with TXRDY interrupt

* disabled)

*/

static void atmel_tx_chars(struct uart_port *port)

{


struct circ_buf *xmit = &port->info->xmit;


if (port->x_char && UART_GET_CSR(port) & ATMEL_US_TXRDY) {


UART_PUT_CHAR(port, port->x_char);

port->icount.tx++;

port->x_char = 0;

}

if (uart_circ_empty(xmit) || uart_tx_stopped(port))

return;


while (UART_GET_CSR(port) & ATMEL_US_TXRDY) {


UART_PUT_CHAR(port, xmit->buf[xmit->tail]);

xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE – 1);

port->icount.tx++;

if (uart_circ_empty(xmit))

break;

}


if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)

uart_write_wakeup(port);


if (!uart_circ_empty(xmit))

UART_PUT_IER(port, ATMEL_US_TXRDY);

}


/*

* receive interrupt handler.

*/

static void

atmel_handle_receive(struct uart_port *port, unsigned int pending)

{


struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);


if (atmel_use_dma_rx(port)) {


/*

* PDC receive. Just schedule the tasklet and let it

* figure out the details.

*

* TODO: We’re not handling error flags correctly at

* the moment.

*/

if (pending & (ATMEL_US_ENDRX | ATMEL_US_TIMEOUT)) {


UART_PUT_IDR(port, (ATMEL_US_ENDRX

| ATMEL_US_TIMEOUT));

tasklet_schedule(&atmel_port->tasklet);

}


if (pending & (ATMEL_US_RXBRK | ATMEL_US_OVRE |

ATMEL_US_FRAME | ATMEL_US_PARE))

atmel_pdc_rxerr(port, pending);

}


/* Interrupt receive */

if (pending & ATMEL_US_RXRDY)

atmel_rx_chars(port);

else if (pending & ATMEL_US_RXBRK) {


/*

* End of break detected. If it came along with a

* character, atmel_rx_chars will handle it.

*/

UART_PUT_CR(port, ATMEL_US_RSTSTA);

UART_PUT_IDR(port, ATMEL_US_RXBRK);

atmel_port->break_active = 0;

}

}


/*

* transmit interrupt handler. (Transmit is IRQF_NODELAY safe)

*/

static void

atmel_handle_transmit(struct uart_port *port, unsigned int pending)

{


struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);


if (atmel_use_dma_tx(port)) {


/* PDC transmit */

if (pending & (ATMEL_US_ENDTX | ATMEL_US_TXBUFE)) {


UART_PUT_IDR(port, ATMEL_US_ENDTX | ATMEL_US_TXBUFE);

tasklet_schedule(&atmel_port->tasklet);

}

} else {


/* Interrupt transmit */

if (pending & ATMEL_US_TXRDY) {


UART_PUT_IDR(port, ATMEL_US_TXRDY);

tasklet_schedule(&atmel_port->tasklet);

}

}

}


/*

* status flags interrupt handler.

*/

static void

atmel_handle_status(struct uart_port *port, unsigned int pending,

unsigned int status)

{


struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);


if (pending & (ATMEL_US_RIIC | ATMEL_US_DSRIC | ATMEL_US_DCDIC

| ATMEL_US_CTSIC)) {


atmel_port->irq_status = status;

tasklet_schedule(&atmel_port->tasklet);

}

}


/*

* Interrupt handler

*/

static irqreturn_t atmel_interrupt(int irq, void *dev_id)

{


struct uart_port *port = dev_id;

unsigned int status, pending, pass_counter = 0;


do {


status = UART_GET_CSR(port);

pending = status & UART_GET_IMR(port);

if (!pending)

break;


atmel_handle_receive(port, pending);

atmel_handle_status(port, pending, status);

atmel_handle_transmit(port, pending);

} while (pass_counter++ < ATMEL_ISR_PASS_LIMIT);


return pass_counter ? IRQ_HANDLED : IRQ_NONE;

}


/*

* Called from tasklet with ENDTX and TXBUFE interrupts disabled.

*/

static void atmel_tx_dma(struct uart_port *port)

{


struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);

struct circ_buf *xmit = &port->info->xmit;

struct atmel_dma_buffer *pdc = &atmel_port->pdc_tx;

int count;


/* nothing left to transmit? */

if (UART_GET_TCR(port))

return;


xmit->tail += pdc->ofs;

xmit->tail &= UART_XMIT_SIZE – 1;


port->icount.tx += pdc->ofs;

pdc->ofs = 0;


/* more to transmit – setup next transfer */


/* disable PDC transmit */

UART_PUT_PTCR(port, ATMEL_PDC_TXTDIS);


if (!uart_circ_empty(xmit)) {


dma_sync_single_for_device(port->dev,

pdc->dma_addr,

pdc->dma_size,

DMA_TO_DEVICE);


count = CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE);

pdc->ofs = count;


UART_PUT_TPR(port, pdc->dma_addr + xmit->tail);

UART_PUT_TCR(port, count);

/* re-enable PDC transmit and interrupts */

UART_PUT_PTCR(port, ATMEL_PDC_TXTEN);

UART_PUT_IER(port, ATMEL_US_ENDTX | ATMEL_US_TXBUFE);

}


if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)

uart_write_wakeup(port);

}


static void atmel_rx_from_ring(struct uart_port *port)

{


struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);

struct circ_buf *ring = &atmel_port->rx_ring;

unsigned int flg;

unsigned int status;


while (ring->head != ring->tail) {


struct atmel_uart_char c;


/* Make sure c is loaded after head. */

smp_rmb();


c = ((struct atmel_uart_char *)ring->buf)[ring->tail];


ring->tail = (ring->tail + 1) & (ATMEL_SERIAL_RINGSIZE – 1);


port->icount.rx++;

status = c.status;

flg = TTY_NORMAL;


/*

* note that the error handling code is

* out of the main execution path

*/

if (unlikely(status & (ATMEL_US_PARE | ATMEL_US_FRAME

| ATMEL_US_OVRE | ATMEL_US_RXBRK))) {


if (status & ATMEL_US_RXBRK) {


/* ignore side-effect */

status &= ~(ATMEL_US_PARE | ATMEL_US_FRAME);


port->icount.brk++;

if (uart_handle_break(port))

continue;

}

if (status & ATMEL_US_PARE)

port->icount.parity++;

if (status & ATMEL_US_FRAME)

port->icount.frame++;

if (status & ATMEL_US_OVRE)

port->icount.overrun++;


status &= port->read_status_mask;


if (status & ATMEL_US_RXBRK)

flg = TTY_BREAK;

else if (status & ATMEL_US_PARE)

flg = TTY_PARITY;

else if (status & ATMEL_US_FRAME)

flg = TTY_FRAME;

}



if (uart_handle_sysrq_char(port, c.ch))

continue;


uart_insert_char(port, status, ATMEL_US_OVRE, c.ch, flg);

}


/*

* Drop the lock here since it might end up calling

* uart_start(), which takes the lock.

*/

spin_unlock(&port->lock);

tty_flip_buffer_push(port->info->port.tty);

spin_lock(&port->lock);

}


static void atmel_rx_from_dma(struct uart_port *port)

{


struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);

struct tty_struct *tty = port->info->port.tty;

struct atmel_dma_buffer *pdc;

int rx_idx = atmel_port->pdc_rx_idx;

unsigned int head;

unsigned int tail;

unsigned int count;


do {


/* Reset the UART timeout early so that we don’t miss one */

UART_PUT_CR(port, ATMEL_US_STTTO);


pdc = &atmel_port->pdc_rx[rx_idx];

head = UART_GET_RPR(port) – pdc->dma_addr;

tail = pdc->ofs;


/* If the PDC has switched buffers, RPR won’t contain

* any address within the current buffer. Since head

* is unsigned, we just need a one-way comparison to

* find out.

*

* In this case, we just need to consume the entire

* buffer and resubmit it for DMA. This will clear the

* ENDRX bit as well, so that we can safely re-enable

* all interrupts below.

*/

head = min(head, pdc->dma_size);


if (likely(head != tail)) {


dma_sync_single_for_cpu(port->dev, pdc->dma_addr,

pdc->dma_size, DMA_FROM_DEVICE);


/*

* head will only wrap around when we recycle

* the DMA buffer, and when that happens, we

* explicitly set tail to 0. So head will

* always be greater than tail.

*/

count = head – tail;


tty_insert_flip_string(tty, pdc->buf + pdc->ofs, count);


dma_sync_single_for_device(port->dev, pdc->dma_addr,

pdc->dma_size, DMA_FROM_DEVICE);


port->icount.rx += count;

pdc->ofs = head;

}


/*

* If the current buffer is full, we need to check if

* the next one contains any additional data.

*/

if (head >= pdc->dma_size) {


pdc->ofs = 0;

UART_PUT_RNPR(port, pdc->dma_addr);

UART_PUT_RNCR(port, pdc->dma_size);


rx_idx = !rx_idx;

atmel_port->pdc_rx_idx = rx_idx;

}

} while (head >= pdc->dma_size);


/*

* Drop the lock here since it might end up calling

* uart_start(), which takes the lock.

*/

spin_unlock(&port->lock);

tty_flip_buffer_push(tty);

spin_lock(&port->lock);


UART_PUT_IER(port, ATMEL_US_ENDRX | ATMEL_US_TIMEOUT);

}


/*

* tasklet handling tty stuff outside the interrupt handler.

*/

static void atmel_tasklet_func(unsigned long data)

{


struct uart_port *port = (struct uart_port *)data;

struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);

unsigned int status;

unsigned int status_change;


/* The interrupt handler does not take the lock */

spin_lock(&port->lock);


if (atmel_use_dma_tx(port))

atmel_tx_dma(port);

else

atmel_tx_chars(port);


status = atmel_port->irq_status;

status_change = status ^ atmel_port->irq_status_prev;


if (status_change & (ATMEL_US_RI | ATMEL_US_DSR

| ATMEL_US_DCD | ATMEL_US_CTS)) {


/* TODO: All reads to CSR will clear these interrupts! */

if (status_change & ATMEL_US_RI)

port->icount.rng++;

if (status_change & ATMEL_US_DSR)

port->icount.dsr++;

if (status_change & ATMEL_US_DCD)

uart_handle_dcd_change(port, !(status & ATMEL_US_DCD));

if (status_change & ATMEL_US_CTS)

uart_handle_cts_change(port, !(status & ATMEL_US_CTS));


wake_up_interruptible(&port->info->delta_msr_wait);


atmel_port->irq_status_prev = status;

}


if (atmel_use_dma_rx(port))

atmel_rx_from_dma(port);

else

atmel_rx_from_ring(port);


spin_unlock(&port->lock);

}


/*

* Perform initialization and enable port for reception

*/

static int atmel_startup(struct uart_port *port)

{


struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);

struct tty_struct *tty = port->info->port.tty;

int retval;


/*

* Ensure that no interrupts are enabled otherwise when

* request_irq() is called we could get stuck trying to

* handle an unexpected interrupt

*/

UART_PUT_IDR(port, -1);


/*

* Allocate the IRQ

*/

retval = request_irq(port->irq, atmel_interrupt, IRQF_SHARED,

tty ? tty->name : “atmel_serial”, port);

if (retval) {


printk(“atmel_serial: atmel_startup – Can’t get irq/n”);

return retval;

}


/*

* Initialize DMA (if necessary)

*/

if (atmel_use_dma_rx(port)) {


int i;


for (i = 0; i < 2; i++) {


struct atmel_dma_buffer *pdc = &atmel_port->pdc_rx[i];


pdc->buf = kmalloc(PDC_BUFFER_SIZE, GFP_KERNEL);

if (pdc->buf == NULL) {


if (i != 0) {


dma_unmap_single(port->dev,

atmel_port->pdc_rx[0].dma_addr,

PDC_BUFFER_SIZE,

DMA_FROM_DEVICE);

kfree(atmel_port->pdc_rx[0].buf);

}

free_irq(port->irq, port);

return -ENOMEM;

}

pdc->dma_addr = dma_map_single(port->dev,

pdc->buf,

PDC_BUFFER_SIZE,

DMA_FROM_DEVICE);

pdc->dma_size = PDC_BUFFER_SIZE;

pdc->ofs = 0;

}


atmel_port->pdc_rx_idx = 0;


UART_PUT_RPR(port, atmel_port->pdc_rx[0].dma_addr);

UART_PUT_RCR(port, PDC_BUFFER_SIZE);


UART_PUT_RNPR(port, atmel_port->pdc_rx[1].dma_addr);

UART_PUT_RNCR(port, PDC_BUFFER_SIZE);

}

if (atmel_use_dma_tx(port)) {


struct atmel_dma_buffer *pdc = &atmel_port->pdc_tx;

struct circ_buf *xmit = &port->info->xmit;


pdc->buf = xmit->buf;

pdc->dma_addr = dma_map_single(port->dev,

pdc->buf,

UART_XMIT_SIZE,

DMA_TO_DEVICE);

pdc->dma_size = UART_XMIT_SIZE;

pdc->ofs = 0;

}


/*

* If there is a specific “open” function (to register

* control line interrupts)

*/

if (atmel_open_hook) {


retval = atmel_open_hook(port);

if (retval) {


free_irq(port->irq, port);

return retval;

}

}


/*

* Finally, enable the serial port

*/

UART_PUT_CR(port, ATMEL_US_RSTSTA | ATMEL_US_RSTRX);

/* enable xmit & rcvr */

UART_PUT_CR(port, ATMEL_US_TXEN | ATMEL_US_RXEN);


if (atmel_use_dma_rx(port)) {


/* set UART timeout */

UART_PUT_RTOR(port, PDC_RX_TIMEOUT);

UART_PUT_CR(port, ATMEL_US_STTTO);


UART_PUT_IER(port, ATMEL_US_ENDRX | ATMEL_US_TIMEOUT);

/* enable PDC controller */

UART_PUT_PTCR(port, ATMEL_PDC_RXTEN);

} else {


/* enable receive only */

UART_PUT_IER(port, ATMEL_US_RXRDY);

}


return 0;

}


/*

* Disable the port

*/

static void atmel_shutdown(struct uart_port *port)

{


struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);

/*

* Ensure everything is stopped.

*/

atmel_stop_rx(port);

atmel_stop_tx(port);


/*

* Shut-down the DMA.

*/

if (atmel_use_dma_rx(port)) {


int i;


for (i = 0; i < 2; i++) {


struct atmel_dma_buffer *pdc = &atmel_port->pdc_rx[i];


dma_unmap_single(port->dev,

pdc->dma_addr,

pdc->dma_size,

DMA_FROM_DEVICE);

kfree(pdc->buf);

}

}

if (atmel_use_dma_tx(port)) {


struct atmel_dma_buffer *pdc = &atmel_port->pdc_tx;


dma_unmap_single(port->dev,

pdc->dma_addr,

pdc->dma_size,

DMA_TO_DEVICE);

}


/*

* Disable all interrupts, port and break condition.

*/

UART_PUT_CR(port, ATMEL_US_RSTSTA);

UART_PUT_IDR(port, -1);


/*

* Free the interrupt

*/

free_irq(port->irq, port);


/*

* If there is a specific “close” function (to unregister

* control line interrupts)

*/

if (atmel_close_hook)

atmel_close_hook(port);

}


/*

* Flush any TX data submitted for DMA. Called when the TX circular

* buffer is reset.

*/

static void atmel_flush_buffer(struct uart_port *port)

{


struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);


if (atmel_use_dma_tx(port)) {


UART_PUT_TCR(port, 0);

atmel_port->pdc_tx.ofs = 0;

}

}


/*

* Power / Clock management.

*/

static void atmel_serial_pm(struct uart_port *port, unsigned int state,

unsigned int oldstate)

{


struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);


switch (state) {


case 0:

/*

* Enable the peripheral clock for this serial port.

* This is called on uart_open() or a resume event.

*/

clk_enable(atmel_port->clk);


/* re-enable interrupts if we disabled some on suspend */

UART_PUT_IER(port, atmel_port->backup_imr);

break;

case 3:

/* Back up the interrupt mask and disable all interrupts */

atmel_port->backup_imr = UART_GET_IMR(port);

UART_PUT_IDR(port, -1);


/*

* Disable the peripheral clock for this serial port.

* This is called on uart_close() or a suspend event.

*/

clk_disable(atmel_port->clk);

break;

default:

printk(KERN_ERR “atmel_serial: unknown pm %d/n”, state);

}

}


/*

* Change the port parameters

*/

static void atmel_set_termios(struct uart_port *port, struct ktermios *termios,

struct ktermios *old)

{


unsigned long flags;

unsigned int mode, imr, quot, baud;


/* Get current mode register */

mode = UART_GET_MR(port) & ~(ATMEL_US_USCLKS | ATMEL_US_CHRL

| ATMEL_US_NBSTOP | ATMEL_US_PAR);


baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk / 16);

quot = uart_get_divisor(port, baud);


if (quot > 65535) { /* BRGR is 16-bit, so switch to slower clock */

quot /= 8;

mode |= ATMEL_US_USCLKS_MCK_DIV8;

}


/* byte size */

switch (termios->c_cflag & CSIZE) {


case CS5:

mode |= ATMEL_US_CHRL_5;

break;

case CS6:

mode |= ATMEL_US_CHRL_6;

break;

case CS7:

mode |= ATMEL_US_CHRL_7;

break;

default:

mode |= ATMEL_US_CHRL_8;

break;

}


/* stop bits */

if (termios->c_cflag & CSTOPB)

mode |= ATMEL_US_NBSTOP_2;


/* parity */

if (termios->c_cflag & PARENB) {


/* Mark or Space parity */

if (termios->c_cflag & CMSPAR) {


if (termios->c_cflag & PARODD)

mode |= ATMEL_US_PAR_MARK;

else

mode |= ATMEL_US_PAR_SPACE;

} else if (termios->c_cflag & PARODD)

mode |= ATMEL_US_PAR_ODD;

else

mode |= ATMEL_US_PAR_EVEN;

} else

mode |= ATMEL_US_PAR_NONE;


spin_lock_irqsave(&port->lock, flags);


port->read_status_mask = ATMEL_US_OVRE;

if (termios->c_iflag & INPCK)

port->read_status_mask |= (ATMEL_US_FRAME | ATMEL_US_PARE);

if (termios->c_iflag & (BRKINT | PARMRK))

port->read_status_mask |= ATMEL_US_RXBRK;


if (atmel_use_dma_rx(port))

/* need to enable error interrupts */

UART_PUT_IER(port, port->read_status_mask);


/*

* Characters to ignore

*/

port->ignore_status_mask = 0;

if (termios->c_iflag & IGNPAR)

port->ignore_status_mask |= (ATMEL_US_FRAME | ATMEL_US_PARE);

if (termios->c_iflag & IGNBRK) {


port->ignore_status_mask |= ATMEL_US_RXBRK;

/*

* If we’re ignoring parity and break indicators,

* ignore overruns too (for real raw support).

*/

if (termios->c_iflag & IGNPAR)

port->ignore_status_mask |= ATMEL_US_OVRE;

}

/* TODO: Ignore all characters if CREAD is set.*/


/* update the per-port timeout */

uart_update_timeout(port, termios->c_cflag, baud);


/* save/disable interrupts and drain transmitter */

imr = UART_GET_IMR(port);

UART_PUT_IDR(port, -1);

while (!(UART_GET_CSR(port) & ATMEL_US_TXEMPTY))

cpu_relax();


/* disable receiver and transmitter */

UART_PUT_CR(port, ATMEL_US_TXDIS | ATMEL_US_RXDIS);


/* set the parity, stop bits and data size */

UART_PUT_MR(port, mode);


/* set the baud rate */

UART_PUT_BRGR(port, quot);

UART_PUT_CR(port, ATMEL_US_RSTSTA | ATMEL_US_RSTRX);

UART_PUT_CR(port, ATMEL_US_TXEN | ATMEL_US_RXEN);


/* restore interrupts */

UART_PUT_IER(port, imr);


/* CTS flow-control and modem-status interrupts */

if (UART_ENABLE_MS(port, termios->c_cflag))

port->ops->enable_ms(port);


spin_unlock_irqrestore(&port->lock, flags);

}


/*

* Return string describing the specified port

*/

static const char *atmel_type(struct uart_port *port)

{


return (port->type == PORT_ATMEL) ? “ATMEL_SERIAL” : NULL;

}


/*

* Release the memory region(s) being used by ‘port’.

*/

static void atmel_release_port(struct uart_port *port)

{


struct platform_device *pdev = to_platform_device(port->dev);

int size = pdev->resource[0].end – pdev->resource[0].start + 1;


release_mem_region(port->mapbase, size);


if (port->flags & UPF_IOREMAP) {


iounmap(port->membase);

port->membase = NULL;

}

}


/*

* Request the memory region(s) being used by ‘port’.

*/

static int atmel_request_port(struct uart_port *port)

{


struct platform_device *pdev = to_platform_device(port->dev);

int size = pdev->resource[0].end – pdev->resource[0].start + 1;


if (!request_mem_region(port->mapbase, size, “atmel_serial”))

return -EBUSY;


if (port->flags & UPF_IOREMAP) {


port->membase = ioremap(port->mapbase, size);

if (port->membase == NULL) {


release_mem_region(port->mapbase, size);

return -ENOMEM;

}

}


return 0;

}


/*

* Configure/autoconfigure the port.

*/

static void atmel_config_port(struct uart_port *port, int flags)

{


if (flags & UART_CONFIG_TYPE) {


port->type = PORT_ATMEL;

atmel_request_port(port);

}

}


/*

* Verify the new serial_struct (for TIOCSSERIAL).

*/

static int atmel_verify_port(struct uart_port *port, struct serial_struct *ser)

{


int ret = 0;

if (ser->type != PORT_UNKNOWN && ser->type != PORT_ATMEL)

ret = -EINVAL;

if (port->irq != ser->irq)

ret = -EINVAL;

if (ser->io_type != SERIAL_IO_MEM)

ret = -EINVAL;

if (port->uartclk / 16 != ser->baud_base)

ret = -EINVAL;

if ((void *)port->mapbase != ser->iomem_base)

ret = -EINVAL;

if (port->iobase != ser->port)

ret = -EINVAL;

if (ser->hub6 != 0)

ret = -EINVAL;

return ret;

}


static struct uart_ops atmel_pops = {


.tx_empty = atmel_tx_empty,

.set_mctrl = atmel_set_mctrl,

.get_mctrl = atmel_get_mctrl,

.stop_tx = atmel_stop_tx,

.start_tx = atmel_start_tx,

.stop_rx = atmel_stop_rx,

.enable_ms = atmel_enable_ms,

.break_ctl = atmel_break_ctl,

.startup = atmel_startup,

.shutdown = atmel_shutdown,

.flush_buffer = atmel_flush_buffer,

.set_termios = atmel_set_termios,

.type  = atmel_type,

.release_port = atmel_release_port,

.request_port = atmel_request_port,

.config_port = atmel_config_port,

.verify_port = atmel_verify_port,

.pm  = atmel_serial_pm,

};


/*

* Configure the port from the platform device resource info.

*/

static void __devinit atmel_init_port(struct atmel_uart_port *atmel_port,

struct platform_device *pdev)

{


struct uart_port *port = &atmel_port->uart;

struct atmel_uart_data *data = pdev->dev.platform_data;

//访问方式管理


port->iotype = UPIO_MEM;

//访问方式为内存方式


port->flags = UPF_BOOT_AUTOCONF;

//配置方式设置


port->ops = &atmel_pops;

//串口的具体操作,串口驱动的关键实现


port->fifosize = 1;

//FIFO缓存的大小


port->line = pdev->id;

port->dev = &pdev->dev;


port->mapbase = pdev->resource[0].start;

//物理内存


port->irq = pdev->resource[1].start;

//中断号


tasklet_init(&atmel_port->tasklet, atmel_tasklet_func,

(unsigned long)port);


memset(&atmel_port->rx_ring, 0, sizeof(atmel_port->rx_ring));


if (data->regs)

/* Already mapped by setup code */

port->membase = data->regs;

else {


port->flags |= UPF_IOREMAP;

port->membase = NULL;

}


/* for console, the clock could already be configured */

if (!atmel_port->clk) {


atmel_port->clk = clk_get(&pdev->dev, “usart”);

clk_enable(atmel_port->clk);

port->uartclk = clk_get_rate(atmel_port->clk);

}


atmel_port->use_dma_rx = data->use_dma_rx;

atmel_port->use_dma_tx = data->use_dma_tx;

if (atmel_use_dma_tx(port))

port->fifosize = PDC_BUFFER_SIZE;

}


/*

* Register board-specific modem-control line handlers.

*/

void __init atmel_register_uart_fns(struct atmel_port_fns *fns)

{


if (fns->enable_ms)

atmel_pops.enable_ms = fns->enable_ms;

if (fns->get_mctrl)

atmel_pops.get_mctrl = fns->get_mctrl;

if (fns->set_mctrl)

atmel_pops.set_mctrl = fns->set_mctrl;

atmel_open_hook  = fns->open;

atmel_close_hook = fns->close;

atmel_pops.pm  = fns->pm;

atmel_pops.set_wake = fns->set_wake;

}


#ifdef CONFIG_SERIAL_ATMEL_CONSOLE

static void atmel_console_putchar(struct uart_port *port, int ch)

{


while (!(UART_GET_CSR(port) & ATMEL_US_TXRDY))

cpu_relax();

UART_PUT_CHAR(port, ch);

}


/*

* Interrupts are disabled on entering

*/

static void atmel_console_write(struct console *co, const char *s, u_int count)

{


struct uart_port *port = &atmel_ports[co->index].uart;

unsigned int status, imr;

unsigned int pdc_tx;


/*

* First, save IMR and then disable interrupts

*/

imr = UART_GET_IMR(port);

UART_PUT_IDR(port, ATMEL_US_RXRDY | ATMEL_US_TXRDY);


/* Store PDC transmit status and disable it */

pdc_tx = UART_GET_PTSR(port) & ATMEL_PDC_TXTEN;

UART_PUT_PTCR(port, ATMEL_PDC_TXTDIS);


uart_console_write(port, s, count, atmel_console_putchar);


/*

* Finally, wait for transmitter to become empty

* and restore IMR

*/

do {


status = UART_GET_CSR(port);

} while (!(status & ATMEL_US_TXRDY));


/* Restore PDC transmit status */

if (pdc_tx)

UART_PUT_PTCR(port, ATMEL_PDC_TXTEN);


/* set interrupts back the way they were */

UART_PUT_IER(port, imr);

}


/*

* If the port was already initialised (eg, by a boot loader),

* try to determine the current setup.

*/

static void __init atmel_console_get_options(struct uart_port *port, int *baud,

int *parity, int *bits)

{


unsigned int mr, quot;


/*

* If the baud rate generator isn’t running, the port wasn’t

* initialized by the boot loader.

*/

quot = UART_GET_BRGR(port) & ATMEL_US_CD;

if (!quot)

return;


mr = UART_GET_MR(port) & ATMEL_US_CHRL;

if (mr == ATMEL_US_CHRL_8)

*bits = 8;

else

*bits = 7;


mr = UART_GET_MR(port) & ATMEL_US_PAR;

if (mr == ATMEL_US_PAR_EVEN)

*parity = ‘e’;

else if (mr == ATMEL_US_PAR_ODD)

*parity = ‘o’;


/*

* The serial core only rounds down when matching this to a

* supported baud rate. Make sure we don’t end up slightly

* lower than one of those, as it would make us fall through

* to a much lower baud rate than we really want.

*/

*baud = port->uartclk / (16 * (quot – 1));

}


static int __init atmel_console_setup(struct console *co, char *options)

{


struct uart_port *port = &atmel_ports[co->index].uart;

int baud = 115200;

int bits = 8;

int parity = ‘n’;

int flow = ‘n’;


if (port->membase == NULL) {


/* Port not initialized yet – delay setup */

return -ENODEV;

}


UART_PUT_IDR(port, -1);

UART_PUT_CR(port, ATMEL_US_RSTSTA | ATMEL_US_RSTRX);

UART_PUT_CR(port, ATMEL_US_TXEN | ATMEL_US_RXEN);


if (options)

uart_parse_options(options, &baud, &parity, &bits, &flow);

else

atmel_console_get_options(port, &baud, &parity, &bits);


return uart_set_options(port, co, baud, parity, bits, flow);

}


static struct uart_driver atmel_uart;


static struct console atmel_console = {


.name  = ATMEL_DEVICENAME,

.write  = atmel_console_write,

.device  = uart_console_device,

.setup  = atmel_console_setup,

.flags  = CON_PRINTBUFFER,

.index  = -1,

.data  = &atmel_uart,

};


#define ATMEL_CONSOLE_DEVICE &atmel_console


/*

* Early console initialization (before VM subsystem initialized).

*/

static int __init atmel_console_init(void)

{


if (atmel_default_console_device) {


add_preferred_console(ATMEL_DEVICENAME,

atmel_default_console_device->id, NULL);

atmel_init_port(&atmel_ports[atmel_default_console_device->id],

atmel_default_console_device);

register_console(&atmel_console);

}


return 0;

}


console_initcall(atmel_console_init);


/*

* Late console initialization.

*/

static int __init atmel_late_console_init(void)

{


if (atmel_default_console_device

&& !(atmel_console.flags & CON_ENABLED))

register_console(&atmel_console);


return 0;

}


core_initcall(atmel_late_console_init);


static inline bool atmel_is_console_port(struct uart_port *port)

{


return port->cons && port->cons->index == port->line;

}


#else

#define ATMEL_CONSOLE_DEVICE NULL


static inline bool atmel_is_console_port(struct uart_port *port)

{


return false;

}

#endif


static struct uart_driver atmel_uart = {


.owner  = THIS_MODULE,

.driver_name = “atmel_serial”,

.dev_name = ATMEL_DEVICENAME,

.major  = SERIAL_ATMEL_MAJOR,

.minor  = MINOR_START,

.nr  = ATMEL_MAX_UART,

.cons  = ATMEL_CONSOLE_DEVICE,

};


#ifdef CONFIG_PM

static bool atmel_serial_clk_will_stop(void)

{


#ifdef CONFIG_ARCH_AT91

return at91_suspend_entering_slow_clock();

#else

return false;

#endif

}


static int atmel_serial_suspend(struct platform_device *pdev,

pm_message_t state)

{


struct uart_port *port = platform_get_drvdata(pdev);

struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);


if (atmel_is_console_port(port) && console_suspend_enabled) {


/* Drain the TX shifter */

while (!(UART_GET_CSR(port) & ATMEL_US_TXEMPTY))

cpu_relax();

}


/* we can not wake up if we’re running on slow clock */

atmel_port->may_wakeup = device_may_wakeup(&pdev->dev);

if (atmel_serial_clk_will_stop())

device_set_wakeup_enable(&pdev->dev, 0);


uart_suspend_port(&atmel_uart, port);


return 0;

}


static int atmel_serial_resume(struct platform_device *pdev)

{


struct uart_port *port = platform_get_drvdata(pdev);

struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);


uart_resume_port(&atmel_uart, port);

device_set_wakeup_enable(&pdev->dev, atmel_port->may_wakeup);


return 0;

}

#else

#define atmel_serial_suspend NULL

#define atmel_serial_resume NULL

#endif


//根据平台设备的资源构建一个atmle_uart_port结构,并将相关联的uart_port结构和uart_driver关联


static int __devinit atmel_serial_probe(struct platform_device *pdev)

{


struct atmel_uart_port *port;

void *data;

int ret;


BUILD_BUG_ON(!is_power_of_2(ATMEL_SERIAL_RINGSIZE));


port = &atmel_ports[pdev->id];

//串口都保存在atmel_ports数组中,平台设备的id即为数组索引


port->backup_imr = 0;


atmel_init_port(port, pdev);

//构建uart_port结构


if (!atmel_use_dma_rx(&port->uart)) {


ret = -ENOMEM;

data = kmalloc(sizeof(struct atmel_uart_char)

//使用DMA时DMA缓存分配


* ATMEL_SERIAL_RINGSIZE, GFP_KERNEL);

if (!data)

goto err_alloc_ring;

port->rx_ring.buf = data;

}


ret = uart_add_one_port(&atmel_uart, &port->uart);

//把分配的端口加到uart_driver中


if (ret)

goto err_add_port;


device_init_wakeup(&pdev->dev, 1);

platform_set_drvdata(pdev, port);


return 0;


err_add_port:

kfree(port->rx_ring.buf);

port->rx_ring.buf = NULL;

err_alloc_ring:

if (!atmel_is_console_port(&port->uart)) {


clk_disable(port->clk);

clk_put(port->clk);

port->clk = NULL;

}


return ret;

}


11:35:00


static struct platform_driver atmel_serial_driver = {


.probe  = atmel_serial_probe,

.remove  = __devexit_p(atmel_serial_remove),

.suspend = atmel_serial_suspend,

.resume  = atmel_serial_resume,

.driver  = {


.name = “atmel_usart”,

.owner = THIS_MODULE,

},

};


static int __init atmel_serial_init(void)

{


int ret;


ret = uart_register_driver(&atmel_uart);

//注册串口驱动


if (ret)

return ret;


ret = platform_driver_register(&atmel_serial_driver);

//注册平台驱动


if (ret)

uart_unregister_driver(&atmel_uart);


return ret;

}


static void __exit atmel_serial_exit(void)

{


platform_driver_unregister(&atmel_serial_driver);

uart_unregister_driver(&atmel_uart);

}


module_init(atmel_serial_init);

module_exit(atmel_serial_exit);


MODULE_AUTHOR(“Rick Bronson”);

MODULE_DESCRIPTION(“Atmel AT91 / AT32 serial port driver”);

MODULE_LICENSE(“GPL”);

MODULE_ALIAS(“platform:atmel_usart”);


我们顺着驱动加载流程对上面代码做简要分析:


1)当加载驱动时,代码首先执行atmel_serial_init函数,该函数向内核注册了两个驱动分别是struct uart_driver atmel_uart(我们的串口驱动)和struct platform_driver atmel_serial_driver(平台设备驱动,主要用于串口设备的探测和移除工作),注意两个驱动的名称分别是atmel_serial和atmel_usart。


2)当平台驱动加载后会执行平台驱动的probe函数即atmel_serial_probe.在我们的驱动平台设备的加入是在arch/arm/mach-at91/at91sam9260_devices.c中加入的。具体相关代码如下:


/* ——————————————————————–

*  UART

* ——————————————————————– */

#if defined(CONFIG_SERIAL_ATMEL)

static struct resource dbgu_resources[] = {


[0] = {


.start = AT91_VA_BASE_SYS + AT91_DBGU,

.end = AT91_VA_BASE_SYS + AT91_DBGU + SZ_512 – 1,

.flags = IORESOURCE_MEM,

},

[1] = {


.start = AT91_ID_SYS,

.end = AT91_ID_SYS,

.flags = IORESOURCE_IRQ,

},

};


static struct atmel_uart_data dbgu_data = {


.use_dma_tx = 0,

.use_dma_rx = 0,  /* DBGU not capable of receive DMA */

.regs  = (void __iomem *)(AT91_VA_BASE_SYS + AT91_DBGU),

};


static u64 dbgu_dmamask = DMA_BIT_MASK(32);


static struct platform_device at91sam9260_dbgu_device = {


.name  = “atmel_usart”,

.id  = 0,

.dev  = {


.dma_mask  = &dbgu_dmamask,

.coherent_dma_mask = DMA_BIT_MASK(32),

.platform_data  = &dbgu_data,

},

.resource = dbgu_resources,

.num_resources = ARRAY_SIZE(dbgu_resources),

};


static inline void configure_dbgu_pins(void)

{


at91_set_A_periph(AT91_PIN_PB14, 0);  /* DRXD */

at91_set_A_periph(AT91_PIN_PB15, 1);  /* DTXD */

}


static struct resource uart0_resources[] = {


[0] = {


.start = AT91SAM9260_BASE_US0,

.end = AT91SAM9260_BASE_US0 + SZ_16K – 1,

.flags = IORESOURCE_MEM,

},

[1] = {


.start = AT91SAM9260_ID_US0,

.end = AT91SAM9260_ID_US0,

.flags = IORESOURCE_IRQ,

},

};


static struct atmel_uart_data uart0_data = {


.use_dma_tx = 1,

.use_dma_rx = 1,

};


static u64 uart0_dmamask = DMA_BIT_MASK(32);


static struct platform_device at91sam9260_uart0_device = {


.name  = “atmel_usart”,

.id  = 1,

.dev  = {


.dma_mask  = &uart0_dmamask,

.coherent_dma_mask = DMA_BIT_MASK(32),

.platform_data  = &uart0_data,

},

.resource = uart0_resources,

.num_resources = ARRAY_SIZE(uart0_resources),

};


static inline void configure_usart0_pins(unsigned pins)

{


at91_set_A_periph(AT91_PIN_PB4, 1);  /* TXD0 */

at91_set_A_periph(AT91_PIN_PB5, 0);  /* RXD0 */


if (pins & ATMEL_UART_RTS)

at91_set_A_periph(AT91_PIN_PB26, 0); /* RTS0 */

if (pins & ATMEL_UART_CTS)

at91_set_A_periph(AT91_PIN_PB27, 0); /* CTS0 */

if (pins & ATMEL_UART_DTR)

at91_set_A_periph(AT91_PIN_PB24, 0); /* DTR0 */

if (pins & ATMEL_UART_DSR)

at91_set_A_periph(AT91_PIN_PB22, 0); /* DSR0 */

if (pins & ATMEL_UART_DCD)

at91_set_A_periph(AT91_PIN_PB23, 0); /* DCD0 */

if (pins & ATMEL_UART_RI)

at91_set_A_periph(AT91_PIN_PB25, 0); /* RI0 */

}


static struct resource uart1_resources[] = {


[0] = {


.start = AT91SAM9260_BASE_US1,

.end = AT91SAM9260_BASE_US1 + SZ_16K – 1,

.flags = IORESOURCE_MEM,

},

[1] = {


.start = AT91SAM9260_ID_US1,

.end = AT91SAM9260_ID_US1,

.flags = IORESOURCE_IRQ,

},

};


static struct atmel_uart_data uart1_data = {


.use_dma_tx = 1,

.use_dma_rx = 1,

};


static u64 uart1_dmamask = DMA_BIT_MASK(32);


static struct platform_device at91sam9260_uart1_device = {


.name  = “atmel_usart”,

.id  = 2,

.dev  = {


.dma_mask  = &uart1_dmamask,

.coherent_dma_mask = DMA_BIT_MASK(32),

.platform_data  = &uart1_data,

},

.resource = uart1_resources,

.num_resources = ARRAY_SIZE(uart1_resources),

};


static inline void configure_usart1_pins(unsigned pins)

{


/*add by shadow*/

at91_set_A_periph(AT91_PIN_PB6, 1);  /* TXD1 */

/*shadow end*/

at91_set_A_periph(AT91_PIN_PB7, 0);  /* RXD1 */


if (pins & ATMEL_UART_RTS)

at91_set_A_periph(AT91_PIN_PB28, 0); /* RTS1 */

if (pins & ATMEL_UART_CTS)

at91_set_A_periph(AT91_PIN_PB29, 0); /* CTS1 */

}


static struct resource uart2_resources[] = {


[0] = {


.start = AT91SAM9260_BASE_US2,

.end = AT91SAM9260_BASE_US2 + SZ_16K – 1,

.flags = IORESOURCE_MEM,

},

[1] = {


.start = AT91SAM9260_ID_US2,

.end = AT91SAM9260_ID_US2,

.flags = IORESOURCE_IRQ,

},

};


static struct atmel_uart_data uart2_data = {


.use_dma_tx = 1,

.use_dma_rx = 1,

};


static u64 uart2_dmamask = DMA_BIT_MASK(32);


static struct platform_device at91sam9260_uart2_device = {


.name  = “atmel_usart”,

.id  = 3,

.dev  = {


.dma_mask  = &uart2_dmamask,

.coherent_dma_mask = DMA_BIT_MASK(32),

.platform_data  = &uart2_data,

},

.resource = uart2_resources,

.num_resources = ARRAY_SIZE(uart2_resources),

};


static inline void configure_usart2_pins(unsigned pins)

{


at91_set_A_periph(AT91_PIN_PB8, 1);  /* TXD2 */

at91_set_A_periph(AT91_PIN_PB9, 0);  /* RXD2 */


if (pins & ATMEL_UART_RTS)

at91_set_A_periph(AT91_PIN_PA4, 0); /* RTS2 */

if (pins & ATMEL_UART_CTS)

at91_set_A_periph(AT91_PIN_PA5, 0); /* CTS2 */

}


static struct resource uart3_resources[] = {


[0] = {


.start = AT91SAM9260_BASE_US3,

.end = AT91SAM9260_BASE_US3 + SZ_16K – 1,

.flags = IORESOURCE_MEM,

},

[1] = {


.start = AT91SAM9260_ID_US3,

.end = AT91SAM9260_ID_US3,

.flags = IORESOURCE_IRQ,

},

};


static struct atmel_uart_data uart3_data = {


.use_dma_tx = 1,

.use_dma_rx = 1,

};


static u64 uart3_dmamask = DMA_BIT_MASK(32);


static struct platform_device at91sam9260_uart3_device = {


.name  = “atmel_usart”,

.id  = 4,

.dev  = {


.dma_mask  = &uart3_dmamask,

.coherent_dma_mask = DMA_BIT_MASK(32),

.platform_data  = &uart3_data,

},

.resource = uart3_resources,

.num_resources = ARRAY_SIZE(uart3_resources),

};


static inline void configure_usart3_pins(unsigned pins)

{


at91_set_A_periph(AT91_PIN_PB10, 1);  /* TXD3 */

at91_set_A_periph(AT91_PIN_PB11, 0);  /* RXD3 */


if (pins & ATMEL_UART_RTS)

at91_set_B_periph(AT91_PIN_PC8, 0); /* RTS3 */

if (pins & ATMEL_UART_CTS)

at91_set_B_periph(AT91_PIN_PC10, 0); /* CTS3 */

}


static struct resource uart4_resources[] = {


[0] = {


.start = AT91SAM9260_BASE_US4,

.end = AT91SAM9260_BASE_US4 + SZ_16K – 1,

.flags = IORESOURCE_MEM,

},

[1] = {


.start = AT91SAM9260_ID_US4,

.end = AT91SAM9260_ID_US4,

.flags = IORESOURCE_IRQ,

},

};


static struct atmel_uart_data uart4_data = {


.use_dma_tx = 1,

.use_dma_rx = 1,

};


static u64 uart4_dmamask = DMA_BIT_MASK(32);


static struct platform_device at91sam9260_uart4_device = {


.name  = “atmel_usart”,

.id  = 5,

.dev  = {


.dma_mask  = &uart4_dmamask,

.coherent_dma_mask = DMA_BIT_MASK(32),

.platform_data  = &uart4_data,

},

.resource = uart4_resources,

.num_resources = ARRAY_SIZE(uart4_resources),

};


static inline void configure_usart4_pins(void)

{


at91_set_B_periph(AT91_PIN_PA31, 1);  /* TXD4 */

at91_set_B_periph(AT91_PIN_PA30, 0);  /* RXD4 */

}


static struct resource uart5_resources[] = {


[0] = {


.start = AT91SAM9260_BASE_US5,

.end = AT91SAM9260_BASE_US5 + SZ_16K – 1,

.flags = IORESOURCE_MEM,

},

[1] = {


.start = AT91SAM9260_ID_US5,

.end = AT91SAM9260_ID_US5,

.flags = IORESOURCE_IRQ,

},

};


static struct atmel_uart_data uart5_data = {


.use_dma_tx = 1,

.use_dma_rx = 1,

};


static u64 uart5_dmamask = DMA_BIT_MASK(32);


static struct platform_device at91sam9260_uart5_device = {


.name  = “atmel_usart”,

.id  = 6,

.dev  = {


.dma_mask  = &uart5_dmamask,

.coherent_dma_mask = DMA_BIT_MASK(32),

.platform_data  = &uart5_data,

},

.resource = uart5_resources,

.num_resources = ARRAY_SIZE(uart5_resources),

};


static inline void configure_usart5_pins(void)

{


at91_set_A_periph(AT91_PIN_PB12, 1);  /* TXD5 */

at91_set_A_periph(AT91_PIN_PB13, 0);  /* RXD5 */

}


static struct platform_device *__initdata at91_uarts[ATMEL_MAX_UART]; /* the UARTs to use */

struct platform_device *atmel_default_console_device; /* the serial console device */


void __init at91_register_uart(unsigned id, unsigned portnr, unsigned pins)

{


struct platform_device *pdev;


switch (id) {


case 0:  /* DBGU */

pdev = &at91sam9260_dbgu_device;

configure_dbgu_pins();

at91_clock_associate(“mck”, &pdev->dev, “usart”);

break;

case AT91SAM9260_ID_US0:

pdev = &at91sam9260_uart0_device;

configure_usart0_pins(pins);

at91_clock_associate(“usart0_clk”, &pdev->dev, “usart”);

break;

case AT91SAM9260_ID_US1:

pdev = &at91sam9260_uart1_device;

configure_usart1_pins(pins);

at91_clock_associate(“usart1_clk”, &pdev->dev, “usart”);

break;

case AT91SAM9260_ID_US2:

pdev = &at91sam9260_uart2_device;

configure_usart2_pins(pins);

at91_clock_associate(“usart2_clk”, &pdev->dev, “usart”);

break;

case AT91SAM9260_ID_US3:

pdev = &at91sam9260_uart3_device;

configure_usart3_pins(pins);

at91_clock_associate(“usart3_clk”, &pdev->dev, “usart”);

break;

case AT91SAM9260_ID_US4:

pdev = &at91sam9260_uart4_device;

configure_usart4_pins();

at91_clock_associate(“usart4_clk”, &pdev->dev, “usart”);

break;

case AT91SAM9260_ID_US5:

pdev = &at91sam9260_uart5_device;

configure_usart5_pins();

at91_clock_associate(“usart5_clk”, &pdev->dev, “usart”);

break;

default:

return;

}

pdev->id = portnr;  /* update to mapped ID */


if (portnr < ATMEL_MAX_UART)

at91_uarts[portnr] = pdev;

}


void __init at91_set_serial_console(unsigned portnr)

{


if (portnr < ATMEL_MAX_UART)

atmel_default_console_device = at91_uarts[portnr];

}


void __init at91_add_device_serial(void)

{


int i;


for (i = 0; i < ATMEL_MAX_UART; i++) {


if (at91_uarts[i])

platform_device_register(at91_uarts[i]);

}


if (!atmel_default_console_device)

printk(KERN_INFO “AT91: No default serial console defined./n”);

}

#else

void __init at91_register_uart(unsigned id, unsigned portnr, unsigned pins) {}

void __init at91_set_serial_console(unsigned portnr) {}

void __init at91_add_device_serial(void) {}

#endif


在atmel_serial_probe函数中传入的参数就是上面加入的平台设备,注意这里的平台设备和平台驱动具有相同的名字。而前面加载的两个驱动的关联也在这个探测函数中得以体现,具体见上面的代码注解。其他比较好理解就是对uart_ops的实现