CCPC11.14广州正赛

  • Post author:
  • Post category:其他




CCPC 11.14 广州正赛



I (36min 1A)

开始的时候一直不知道哪一题签到,然后疯狂跟榜才发现。。。

打表即可发现规律

先暴力到10,然后可以发现规律



打表代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;
int a[15], sum[15];

int main()
{
    for(int i = 1; i <= 10; i++) a[i] = i;
    for(int i = 1; i <= 10; i++)
    {
        int cnt = 0;
        for(int j = 1; j <= i; j ++) a[j] = j;
        do{
            memset(sum, 0, sizeof(sum));
            bool flag = 1;
            for(int k = 1; k <= i; k++)
            {
                sum[k] = sum[k - 1] + a[k] * 2;
                if(sum[k] % k != 0)
                {
                    flag = 0;
                    break;
                }
            }
            if(flag) cnt++;
        }while(next_permutation(a + 1, a + i + 1));
        printf("%d\n", cnt);
    }
    return 0;
}


过题代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;
typedef long long ll;
const int mod = 998244353;
int T;
ll n;

ll qmi(ll a, ll b)
{
    ll res = 1 % mod;
    while(b)
    {
        if(b & 1) res = res * a % mod;
        b >>= 1;
        a = a * a % mod;
    }
    return res;
}

ll solve(ll n)
{
    if(n == 1) return 1;
    if(n == 2) return 2;
    if(n == 3) return 6;
    ll res = qmi(2, n - 2);
    res = res * 3 % mod;
    return res;
}

int main()
{
    scanf("%d", &T);
    while(T--)
    {
        scanf("%lld", &n);
        ll res = solve(n);
        printf("%lld\n", res);
    }
    return 0;
}



H (72min 2A)

题意:满足




x

m

o

d

  

y

=

a

x \mod y = a






x












m


o


d








y




=








a








y

m

o

d

  

z

=

b

y \mod z = b






y












m


o


d








z




=








b








z

m

o

d

  

x

=

c

z \mod x = c






z












m


o


d








x




=








c




给你



a

,

b

,

c

a,b,c






a


,




b


,




c





构造出x,y,z

不妨设



c

>

b

c > b






c




>








b




只要满足




z

=

c

z=c






z




=








c








y

=

k

c

+

b

y=k*c+b






y




=








k













c




+








b








x

=

k

c

+

b

+

a

x = k * c + b + a






x




=








k













c




+








b




+








a




选定合适的



k

k






k





即可

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;
typedef long long ll;
int T;
ll a, b, c;
ll x, y, z, k;

int main()
{
    scanf("%d", &T);
    while(T--)
    {
        scanf("%lld%lld%lld", &a, &b, &c);
        if(a == 0 && b == 0 && c == 0) {puts("YES"); printf("1 1 1\n");}
        else if(a == b && b == c && a > 0)
        {
            puts("NO");
        }
        else
        {
            if(c > b)
            {
                z = c;
                k = max((ll)10, (a + c - 1) / c + 1);
                y = k * c + b;
                x = k * c + b + a;
            }
            else if(b > a)
            {
                y = b;
                k = max((ll)10, (c + b - 1) / b + 1);
                x = k * b + a;
                z = k * b + a + c;
            }
            else if(a > c)
            {
                x = a;
                k = max((ll)10, (b + a - 1) / a + 1);
                z = k * a + c;
                y = k * a + c + b;
            }
            puts("YES");
            printf("%lld %lld %lld\n", x, y, z);
            // bool ok = 0;
            // if(x % y == a && y % z == b && z % x == c) ok = 1;
            // if(ok) puts("!!!!!");
        }
    }
    return 0;
}



C (4A)

与桂林类似,只要二分最后的答案即可。

很不幸wa了很多发

#include <bits/stdc++.h>

#define gc()(is==it?it=(is=in)+fread(in,1,Q,stdin),(is==it?EOF:*is++):*is++)

using namespace std;

typedef long long ll;

const int Q=(1<<24)+1;
const int N = 1000010;

char in[Q],*is=in,*it=in,c;

void read(long long &n){
  for(n=0;(c=gc())<'0'||c>'9';);
  for(;c<='9'&&c>='0';c=gc())n=n*10+c-48;
}

ll n, m;
ll a[N];

bool check(ll x)
{
    ll minl = n - a[m] + a[1] - 1;
    ll remain = 0;
    ll loc = a[1];
    ll cnt = 0;
    for(int i = 1; i <= m - 1; i ++) {
        ll t = x - remain;
        if(t <= 0) return false;
        if(a[i + 1] - a[i] <= t) {
            ll d = min(minl, t - (a[i + 1] - a[i]));
            cnt = cnt + d;
            remain = 0;
            loc = a[i + 1];
            minl = minl - d;
            minl = min(minl, loc - a[i] - 1);
        }
        else {
            loc = a[i] + t;
            remain = a[i + 1] - loc;
            minl = min(minl, loc - a[i] - 1);
        }
    }
    ll t = x - remain;
    if(t >= n - a[m] + a[1]) return true;
    else remain = n - a[m] + a[1] - t;
    if(cnt >= remain) return true;
    return false;
}

int main()
{
    //scanf("%lld %lld", &n, &m);
    //for(int i = 1; i <= m; i ++) scanf("%lld", &a[i]);

    read(n), read(m);
    //cout << n << " " << m << endl;
    for(int i = 1; i <= m; i ++) read(a[i]);
    //for(int i = 1; i <= m; i ++) cout << a[i] << endl;
    if(m == 1) {
        printf("%lld\n", n);
        return 0;
    }
    ll r = 1e18, l = 1;
    while(l < r) {
        ll mid = l + r >> 1;
        //cout << mid << endl;
        if(check(mid)) r = mid;
        else l = mid + 1;
    }
    printf("%lld\n", l);
    return 0;
}

总体来说还是不错的,在金牌和银牌师兄的带领之下,我终于拿到了第一个铜牌,可喜可贺!!!

非常感谢师兄不嫌弃我。。。

未来继续加油吧
在这里插入图片描述



版权声明:本文为weixin_45360119原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。