spark-streaming kafka Blacklisting behavior can be configured via spark.blacklist.*.

  • Post author:
  • Post category:其他


[2022-03-08 15:23:14.742]Container exited with a non-zero exit code 50. Error file: prelaunch.err.
	Last 4096 bytes of prelaunch.err :
	Last 4096 bytes of stderr :
	SLF4J: Class path contains multiple SLF4J bindings.
	SLF4J: Found binding in [jar:file:/srv/BigData/data1/nm/localdir/filecache/10/spark-archive-2x.zip/slf4j-log4j12-1.7.30.jar!/org/slf4j/impl/StaticLoggerBinder.class]
	SLF4J: Found binding in [jar:file:/opt/Bigdata/FusionInsight_HD_8.1.0.1/install/FusionInsight-Hadoop-3.1.1/hadoop/share/hadoop/common/lib/slf4j-log4j12-1.7.30.jar!/org/slf4j/impl/StaticLoggerBinder.class]
	SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
	SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
	
	
	.
	
	Blacklisting behavior can be configured via spark.blacklist.*.
	
		at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:2027)
		at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1972)
		at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1971)
		at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
		at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
		at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1971)
		at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:987)
		at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:987)
		at scala.Option.foreach(Option.scala:257)
		at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:987)
		at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2207)
		at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2156)
		at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2145)
		at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
		at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:794)
		at org.apache.spark.SparkContext.runJob(SparkContext.scala:2234)
		at org.apache.spark.SparkContext.runJob(SparkContext.scala:2255)
		at org.apache.spark.SparkContext.runJob(SparkContext.scala:2274)
		at org.apache.spark.SparkContext.runJob(SparkContext.scala:2299)
		at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:979)
		at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:977)
		at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
		at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
		at org.apache.spark.rdd.RDD.withScope(RDD.scala:384)
		at org.apache.spark.rdd.RDD.foreachPartition(RDD.scala:977)
		at com.ck.data.stream.spark.chat.AggregationChatStream$$anonfun$apply$1.apply(AggregationChatStream.scala:51)
		at com.ck.data.stream.spark.chat.AggregationChatStream$$anonfun$apply$1.apply(AggregationChatStream.scala:49)
		at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:636)
		at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:636)
		at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:51)
		at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51)
		at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51)
		at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:420)
		at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:50)
		at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50)
		at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50)
		at scala.util.Try$.apply(Try.scala:192)
		at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39)
		at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:259)
		at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:259)
		at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:259)
		at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
		at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:258)
		at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
		at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
		at java.lang.Thread.run(Thread.java:748)
	 | org.apache.spark.deploy.yarn.Client.logError(Logging.scala:70)
	Exception in thread "main" org.apache.spark.SparkException: Application application_1645201388160_2583 finished with failed status
		at org.apache.spark.deploy.yarn.Client.run(Client.scala:1234)
		at org.apache.spark.deploy.yarn.YarnClusterApplication.start(Client.scala:1611)
		at org.apache.spark.deploy.SparkSubmit.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:882)
		at org.apache.spark.deploy.SparkSubmit.doRunMain$1(SparkSubmit.scala:164)
		at org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:187)
		at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:89)
		at org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:957)
		at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:966)
		at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

背景

spark-streaming读取kafka的数据写入到hbase。程序执行了三天没有任何问题



版权声明:本文为weixin_40126236原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。