📋📋📋
本文目录如下:
⛳️⛳️⛳️
目录
1 概述
随着传感器检测技术、智能控制技术和材料技术的快速发展,四轴无人机及其配套系统的发展越来越成熟。无人机遥感系统具有成本低、易维护、效率高、时效性强及对环境要求低等特点。
2 运行结果
部分代码:
function animation = drone_Animation(x,y,z,roll,pitch,yaw)
% This Animation code is for QuadCopter. Written by Jitendra Singh
%% Define design parameters
D2R = pi/180;
R2D = 180/pi;
b = 0.6; % the length of total square cover by whole body of quadcopter in meter
a = b/3; % the legth of small square base of quadcopter(b/4)
H = 0.06; % hight of drone in Z direction (4cm)
H_m = H+H/2; % hight of motor in z direction (5 cm)
r_p = b/4; % radius of propeller
%% Conversions
ro = 45*D2R; % angle by which rotate the base of quadcopter
Ri = [cos(ro) -sin(ro) 0;
sin(ro) cos(ro) 0;
0 0 1]; % rotation matrix to rotate the coordinates of base
base_co = [-a/2 a/2 a/2 -a/2; % Coordinates of Base
-a/2 -a/2 a/2 a/2;
0 0 0 0];
base = Ri*base_co; % rotate base Coordinates by 45 degree
to = linspace(0, 2*pi);
xp = r_p*cos(to);
yp = r_p*sin(to);
zp = zeros(1,length(to));
%% Define Figure plot
fig1 = figure('pos', [0 50 800 600]);
hg = gca;
view(68,53);
grid on;
axis equal;
xlim([-1.5 1.5]); ylim([-1.5 1.5]); zlim([0 3.5]);
title('(JITENDRA) Drone Animation')
xlabel('X[m]');
ylabel('Y[m]');
zlabel('Z[m]');
hold(gca, 'on');
%% Design Different parts
% design the base square
drone(1) = patch([base(1,:)],[base(2,:)],[base(3,:)],'r');
drone(2) = patch([base(1,:)],[base(2,:)],[base(3,:)+H],'r');
alpha(drone(1:2),0.7);
% design 2 parpendiculer legs of quadcopter
[xcylinder ycylinder zcylinder] = cylinder([H/2 H/2]);
drone(3) = surface(b*zcylinder-b/2,ycylinder,xcylinder+H/2,'facecolor','b');
drone(4) = surface(ycylinder,b*zcylinder-b/2,xcylinder+H/2,'facecolor','b') ;
alpha(drone(3:4),0.6);
% design 4 cylindrical motors
drone(5) = surface(xcylinder+b/2,ycylinder,H_m*zcylinder+H/2,'facecolor','r');
drone(6) = surface(xcylinder-b/2,ycylinder,H_m*zcylinder+H/2,'facecolor','r');
drone(7) = surface(xcylinder,ycylinder+b/2,H_m*zcylinder+H/2,'facecolor','r');
drone(8) = surface(xcylinder,ycylinder-b/2,H_m*zcylinder+H/2,'facecolor','r');
alpha(drone(5:8),0.7);
% design 4 propellers
drone(9) = patch(xp+b/2,yp,zp+(H_m+H/2),'c','LineWidth',0.5);
drone(10) = patch(xp-b/2,yp,zp+(H_m+H/2),'c','LineWidth',0.5);
drone(11) = patch(xp,yp+b/2,zp+(H_m+H/2),'p','LineWidth',0.5);
drone(12) = patch(xp,yp-b/2,zp+(H_m+H/2),'p','LineWidth',0.5);
alpha(drone(9:12),0.3);
%% create a group object and parent surface
combinedobject = hgtransform('parent',hg );
set(drone,'parent',combinedobject)
% drawnow
for i = 1:length(x)
ba = plot3(x(1:i),y(1:i),z(1:i), 'b:','LineWidth',1.5);
translation = makehgtform('translate',...
[x(i) y(i) z(i)]);
%set(combinedobject, 'matrix',translation);
rotation1 = makehgtform('xrotate',(pi/180)*(roll(i)));
rotation2 = makehgtform('yrotate',(pi/180)*(pitch(i)));
rotation3 = makehgtform('zrotate',yaw(i));
%scaling = makehgtform('scale',1-i/20);
set(combinedobject,'matrix',...
translation*rotation3*rotation2*rotation1);
%movieVector(i) = getframe(fig1);
%delete(b);
drawnow
% pause(0.2);
end
function animation = drone_Animation(x,y,z,roll,pitch,yaw)
% This Animation code is for QuadCopter. Written by Jitendra Singh
%% Define design parameters
D2R = pi/180;
R2D = 180/pi;
b = 0.6; % the length of total square cover by whole body of quadcopter in meter
a = b/3; % the legth of small square base of quadcopter(b/4)
H = 0.06; % hight of drone in Z direction (4cm)
H_m = H+H/2; % hight of motor in z direction (5 cm)
r_p = b/4; % radius of propeller
%% Conversions
ro = 45*D2R; % angle by which rotate the base of quadcopter
Ri = [cos(ro) -sin(ro) 0;
sin(ro) cos(ro) 0;
0 0 1]; % rotation matrix to rotate the coordinates of base
base_co = [-a/2 a/2 a/2 -a/2; % Coordinates of Base
-a/2 -a/2 a/2 a/2;
0 0 0 0];
base = Ri*base_co; % rotate base Coordinates by 45 degree
to = linspace(0, 2*pi);
xp = r_p*cos(to);
yp = r_p*sin(to);
zp = zeros(1,length(to));
%% Define Figure plot
fig1 = figure(‘pos’, [0 50 800 600]);
hg = gca;
view(68,53);
grid on;
axis equal;
xlim([-1.5 1.5]); ylim([-1.5 1.5]); zlim([0 3.5]);
title(‘(JITENDRA) Drone Animation’)
xlabel(‘X[m]’);
ylabel(‘Y[m]’);
zlabel(‘Z[m]’);
hold(gca, ‘on’);
%% Design Different parts
% design the base square
drone(1) = patch([base(1,:)],[base(2,:)],[base(3,:)],’r’);
drone(2) = patch([base(1,:)],[base(2,:)],[base(3,:)+H],’r’);
alpha(drone(1:2),0.7);
% design 2 parpendiculer legs of quadcopter
[xcylinder ycylinder zcylinder] = cylinder([H/2 H/2]);
drone(3) = surface(b*zcylinder-b/2,ycylinder,xcylinder+H/2,’facecolor’,’b’);
drone(4) = surface(ycylinder,b*zcylinder-b/2,xcylinder+H/2,’facecolor’,’b’) ;
alpha(drone(3:4),0.6);
% design 4 cylindrical motors
drone(5) = surface(xcylinder+b/2,ycylinder,H_m*zcylinder+H/2,’facecolor’,’r’);
drone(6) = surface(xcylinder-b/2,ycylinder,H_m*zcylinder+H/2,’facecolor’,’r’);
drone(7) = surface(xcylinder,ycylinder+b/2,H_m*zcylinder+H/2,’facecolor’,’r’);
drone(8) = surface(xcylinder,ycylinder-b/2,H_m*zcylinder+H/2,’facecolor’,’r’);
alpha(drone(5:8),0.7);
% design 4 propellers
drone(9) = patch(xp+b/2,yp,zp+(H_m+H/2),’c’,’LineWidth’,0.5);
drone(10) = patch(xp-b/2,yp,zp+(H_m+H/2),’c’,’LineWidth’,0.5);
drone(11) = patch(xp,yp+b/2,zp+(H_m+H/2),’p’,’LineWidth’,0.5);
drone(12) = patch(xp,yp-b/2,zp+(H_m+H/2),’p’,’LineWidth’,0.5);
alpha(drone(9:12),0.3);
%% create a group object and parent surface
combinedobject = hgtransform(‘parent’,hg );
set(drone,’parent’,combinedobject)
% drawnow
for i = 1:length(x)
ba = plot3(x(1:i),y(1:i),z(1:i), ‘b:’,’LineWidth’,1.5);
translation = makehgtform(‘translate’,…
[x(i) y(i) z(i)]);
%set(combinedobject, ‘matrix’,translation);
rotation1 = makehgtform(‘xrotate’,(pi/180)*(roll(i)));
rotation2 = makehgtform(‘yrotate’,(pi/180)*(pitch(i)));
rotation3 = makehgtform(‘zrotate’,yaw(i));
%scaling = makehgtform(‘scale’,1-i/20);
set(combinedobject,’matrix’,…
translation*rotation3*rotation2*rotation1);
%movieVector(i) = getframe(fig1);
%delete(b);
drawnow
% pause(0.2);
end
3 参考文献
部分理论引用网络文献,如有侵权请联系删除。
[1]李想,李阳.四轴无人机在林业管理中的应用[J].广西林业科学,2020,49(02):296-299.DOI:10.19692/j.cnki.gfs.2020.02.028.
4 Matlab代码实现