数据包络分析 (DEA) 是一种数据驱动的非参数效率测度方法,并由美国著名运筹学家 A.Charnes、W.W.Cooper、E.Rhodes (1978) 首先提出。由于其不预设定具体函数形式和允许多种投入产出的优点,现已被学者们广泛用于评估决策单元的投入产出效率。经过数十年的发展,DEA模型及理论的发展十分迅速,国内外期刊,不断有人提出崭新的DEA模型,如零和收益(ZSG)DEA、网络DEA模型、含有非期望产出的SBM模型等等。大家在运用DEA模型的时候,碰到的一大难题就是如何求出DEA模型的结果,那一行行的约束公式,往往令人望而生畏。虽然市场上已经出现了为数众多的DEA模型软件,但是大多只能计算一些常见的DEA模型,对于一些前沿模型,则无能为力。有鉴于此,我们开发了一款新的DEA效率计算软件:Panda-DEA,除了会包含基础的DEA模型外,具有如下特点:
1、操作简单,无需对数据做过多处理;
2、结果以论文为导向,如零和收益ZSG-DEA模型,会直接进行多次迭代,并将迭代结果写入文件,用户可以直接放进论文;
3、以近两年国内外的前沿DEA理论为基础,不断增加新模型,满足广大用户求新、求变的需求。
软件的操作过程如下所示:
①导入数据
②定义DMU、投入变量、产出变量
③选择模型
④运行模型
⑤查看结果
点击确定,会自动弹出结果文件所在目录。
版权声明:本文为weixin_52338842原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。