XTU 1250

  • Post author:
  • Post category:其他



http://202.197.224.59/OnlineJudge2/index.php/Problem/read/id/1250

Super Fast Fourier Transform

Bobo has two sequences of integers





{



a

1

,


a

2

,



,


a

n

}



















and





{



b

1

,


b

2

,



,


b

m

}



















. He would like to find










i

=

1

n






j

=

1

m







|


a

i




b

j



|−−−−−−−√



.




































Note that







x









denotes the maximum integer does not exceed





x





, and







|

x



|











denotes the absolute value of





x





.

Input

The input contains at most





30





sets. For each set:

The first line contains





2





integers





n

,

m







(





1



n

,

m




10

5













).

The second line contains





n





integers






a

1

,


a

2

,



,


a

n

















.

The thrid line contains





m





integers






b

1

,


b

2

,



,


b

m

















.

(






a

i

,


b

i



0

,


a

1

+


a

2

+



+


a

n

,


b

1

+


b

2

+



,


b

m




10

6













































)

Output

For each set, an integer denotes the sum.

Sample Input

1 2
1
2 3
2 3
1 2
3 4 5

Sample Output

2
7

不得不说自己笨,这么简单,当时就是不会

题意:n个a,m个b的相乘的累积和

思路:把重复的a和b找出了,会减少很大的复杂度

 1 #include <stdio.h>
 2 #include <math.h>
 3 #include <string.h>
 4 #include <stdlib.h>
 5 
 6 int a[100005],b[100005],suma[1000005],sumb[1000005];
 7 long long ans;
 8 
 9 int main()
10 {
11     int m,n,acut,bcut,tmp;
12     while(~scanf("%d%d",&m,&n))
13     {
14         acut = 0,bcut = 0;
15         memset(suma,0,sizeof(suma));
16         memset(sumb,0,sizeof(sumb));
17         for(int i = 1;i<=m;i++)
18         {
19             scanf("%d",&tmp);
20             if(suma[tmp]==0)
21                 a[acut++] = tmp;
22             suma[tmp]++;
23         }
24         for(int i = 1;i<=n;i++)
25         {
26             scanf("%d",&tmp);
27             if(sumb[tmp]==0)
28                 b[bcut++] = tmp;
29             sumb[tmp]++;
30         }
31         ans = 0;
32         for(int i = 0;i<acut;i++)
33             for(int j = 0;j<bcut;j++)
34             {
35                 ans+=(long long ) suma[a[i]]*sumb[b[j]]*(long long )(sqrt(abs(a[i]-b[j])));
36             }
37         printf("%lld\n",ans);
38     }
39     return 0;
40 }

转载于:https://www.cnblogs.com/Tree-dream/p/6540096.html