SparkStreaming +kafka 的offset保存MySQL、hbase、redis、zookeeper

  • Post author:
  • Post category:mysql



Kafka做为一款流行的分布式发布订阅消息系统,以高吞吐、低延时、高可靠的特点著称

其实说白了,官方提供的思路就是,把JavaInputDStream转换为OffsetRange对象,该对象具有topic对应的分区的所有信息,每次batch处理完,Spark Streaming都会自动更新该对象,所以你只需要找个合适的地方保存该对象(比如HBase、HDFS),就可以愉快的操纵offset了。

一、SparkStreaming直连方式读取kafka数据,使用MySQL保存偏移量

在数据库中新建一张表Offset,表结构设计如图

在这里插入图片描述

/*kafka偏移量保存在数据库,spark从kafka拉去数据时候,先读取数据库偏移量*/
object StreamingKafkaMysqlOffset {
  //设置日志级别
  Logger.getLogger("org").setLevel(Level.WARN)

  def main(args: Array[String]): Unit = {
    //conf 本地运行设置
    val conf: SparkConf = new SparkConf()
      .setMaster("local[*]")
      .setAppName(this.getClass.getSimpleName)
      //每秒钟每个分区kafka拉取消息的速率
      .set("spark.streaming.kafka.maxRatePerPartition", "100")
      // 序列化
      .set("spark.serilizer", "org.apache.spark.serializer.KryoSerializer")
      // 建议开启rdd的压缩
      .set("spark.rdd.compress", "true")

    //SparkStreaming
    val ssc: StreamingContext = new StreamingContext(conf, Seconds(1))

    // kafka的参数配置
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> "hadoop:9092,hadoop-01:9092,hadoop-02:9092",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> groupId,
      "auto.offset.reset" -> "earliest",
      "enable.auto.commit" -> (false: java.lang.Boolean) //自己维护偏移量
    )
    val groupId = "topic_group0"
    val topic = "order"
    val topics = Array(topic)‘
    val config: Config = ConfigFactory.load()
    // 需要设置偏移量的值
    val offsets: mutable.HashMap[TopicPartition, Long] = mutable.HashMap[TopicPartition, Long]()
    val conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/bigdata?characterEncoding=utf-8", "root", "123456")
    val conn1 = DriverManager.getConnection(config.getString("db.url"), config.getString("db.user"), config.getString("db.password"))

    val pstm = conn.prepareStatement("select * from mysqloffset where groupId = ? and topic = ? ")
    pstm.setString(1, groupId)
    pstm.setString(2, topic)

    val result: ResultSet = pstm.executeQuery()
    while (result.next()) {
      // 把数据库中的偏移量数据加载了
      val p = result.getInt("partition")
      val f = result.getInt("untilOffset")
      //      offsets += (new TopicPartition(topic,p)-> f)
      val partition: TopicPartition = new TopicPartition(topic, p)
      offsets.put(partition, f)
    }

    val stream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
      ssc,
      LocationStrategies.PreferConsistent,
      Subscribe[String, String](topics, kafkaParams, offsets)
    )

    //转换成RDD
    stream.foreachRDD(rdd => {
      //手动指定分区的地方
      val ranges: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
      println("长度=" + ranges.length)
      ranges.foreach(println)
      //: RDD[(String, Int)]
      val result = rdd.map(_.value()).flatMap(_.split(",")).map((_, 1)).reduceByKey(_ + _)
      result.foreach(println)

      //      result.foreachPartition(p => {
      //        val jedis: Jedis = ToolsRedisMysql.getJedis()
      //        //        val jedis = RedisUtils.getJedis
      //        p.foreach(zookeeper => {
      //          jedis.hincrBy("wc1", zookeeper._1, zookeeper._2)
      //        })
      //        jedis.close()
      //      })

      // 把偏移量的Array  写入到mysql中
      ranges.foreach(zookeeper => {
        // 思考,需要保存哪些数据呢? 起始的offset不需要  还需要加上 groupid

        val pstm = conn.prepareStatement("replace into mysqloffset values (?,?,?,?)")
        pstm.setString(1, zookeeper.topic)
        pstm.setInt(2, zookeeper.partition)
        pstm.setLong(3, zookeeper.untilOffset)
        pstm.setString(4, groupId)
        pstm.execute()
        pstm.close()
      })
    })
    ssc.start()
    ssc.awaitTermination() 
  }
}

二、offset 保存到hbase

 
import scala.collection.mutable

/**  单个跟组情况
  * 手工操作offset
  *        1 从hbase获取offset,从kafka拉取数据
没有分组消费,所以没有分组信息
    htable: hbase_consumer_offset
    Family: topic_partition_offset
    column: topic 
            partition
            offset
   rowkey:topic_groupid_partition
  *        2 数据处理完后,把until offset 保存到hbase
  *        3 kafka 长时间挂掉之后,从kafka最早的offset 开始读取 此处还需要处理   
  */
object OffsetOperate {
  var hbaseProp = PropertiesUtil.getProperties("hbase")
  var kafkaconsumePro = PropertiesUtil.getProperties("kafkaconsume")
  def main(args: Array[String]): Unit = {

  val conf = new SparkConf().setAppName("sparkStreaming - offset operate")
    .setMaster("local[2]") // --master local[2] | spark://xx:7077 | yarn
    .set("spark.testing.memory", "2147480000")
    val sc = new SparkContext(conf)
    val ssc = new StreamingContext(sc,Seconds(5))

    //kafka配置
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> kafkaconsumePro.getProperty("bootstrap.servers"),
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> kafkaconsumePro.getProperty("group"),
      "auto.offset.reset" -> "earliest", // 第一次读取时从topic 首位置开始读取
      "enable.auto.commit" -> (false: java.lang.Boolean)// kafka 不保存消费的offset
    )

    //监听频道
    val topics = Array(kafkaconsumePro.getProperty("topics"))
    // 获取hbase连接
    val hbaseConf = HBaseConfiguration.create()
    hbaseConf.set("hbase.zookeeper.quorum",hbaseProp.getProperty("quorum")) //zookeeper 集群
    hbaseConf.set("hbase.zookeeper.property.client","2181")
    hbaseConf.set("hbase.master", hbaseProp.getProperty("hbase_master"))
    hbaseConf.set("hbase.defaults.for.version.skip", "true")
    //获取连接对象
    val conn = ConnectionFactory.createConnection(hbaseConf)
    val admin = conn.getAdmin
    val tn = TableName.valueOf("hbase_consumer_offset") //hbase 表名
    val isExist = admin.tableExists(tn)
    val streams : InputDStream[ConsumerRecord[String,String]]= {
    if(isExist) {
      val table = new HTable(hbaseConf, "hbase_consumer_offset")
      val filter = new RowFilter(CompareOp.GREATER_OR_EQUAL, new BinaryPrefixComparator(Bytes.toBytes(topics + "_"+ groupid)))
      println("============ 过滤器已经创建 ==========")
      val s = new Scan()
      s.setFilter(filter)
      val rs = table.getScanner(s)

      // 设置 offset
      val fromOffsets = scala.collection.mutable.Map[TopicPartition, Long]()
      var s1 = ""
      var s2 = 0
      var s3: Long = 0
        for (r: Result <- rs.next(200)) {
          println("rowKey : " + new String(r.getRow))
          for (keyvalue: KeyValue <- r.raw()) {
            if ("topic".equals(new String(keyvalue.getQualifier))) {
              s1 = new String(keyvalue.getValue)
              println("columnFamily :" + new String(keyvalue.getFamily) + " column :" +new String( keyvalue.getQualifier) + s1)
            } else if ("partition".equals(new String(keyvalue.getQualifier))){
              s2 = Bytes.toInt(keyvalue.getValue)
              println("columnFamily :" +  new String(keyvalue.getFamily) + " column :" + new String( keyvalue.getQualifier) + s2)
            } else if("offset".equals(new String(keyvalue.getQualifier))) { //if("offset".equals(new String(keyvalue.getQualifier)))
              s3 = Bytes.toLong(keyvalue.getValue)
              println("columnFamily :" + new String(keyvalue.getFamily) + " column :" + new String( keyvalue.getQualifier) + s3)
            }
          }
          fromOffsets.put(new TopicPartition(s1, s2), s3)
        }
      println("fromOffset is : "+fromOffsets)
        KafkaUtils.createDirectStream(ssc, LocationStrategies.PreferConsistent,
          ConsumerStrategies.Assign(fromOffsets.keySet, kafkaParams, fromOffsets)) //(fromOffsets.keySet,kafkaParams,fromOffsets))
      }else{ //Hbase 里面不存在offset表,从topic首位置开始消费
        val htable = new HTableDescriptor(TableName.valueOf("hbase_consumer_offset"))
        htable.addFamily(new HColumnDescriptor(("topic_partition_offset")))
        admin.createTable(htable)
        println("表已经创建成功========" + htable)
      KafkaUtils.createDirectStream(ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe(topics, kafkaParams))
      }
    }
  // val dstream = streams.map(x=>URLDecoder.decode(x.value()))

    // 操作成功后更新offset
    streams.foreachRDD{ rdd =>
      //if(!rdd.isEmpty()){
      // 打成一个事务,把业务计算和offset保存放在一起,要么成功,要么一起失败,实现精确一次的消费
      import scala.collection.JavaConversions._
      val table = new HTable(hbaseConf,"hbase_consumer_offset")
      table.setAutoFlush(false, false)
      var putList:List[Put] = List()
        val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges  // RDD[ConsumerRecord[String,String]] 强转成offsetRanges
        for(offsetRange <- offsetRanges){
          println("the topic is "+offsetRange.topic)
          println("the partition is "+offsetRange.partition)
          println("the fromOffset is "+offsetRange.fromOffset)
          println("the untilOffset is "+offsetRange.untilOffset)
          println("the object is "+offsetRange)
         // val table = new HTable(hbaseConf,"hbase_consumer_offset")
         // table.setAutoFlush(false, false)
          val put  = new Put(Bytes.toBytes(offsetRange.topic+"_"+groupid+"_"+offsetRange.partition))//put时候指定列族
          put.add(Bytes.toBytes("topic_partition_offset"),Bytes.toBytes("topic"),Bytes.toBytes(offsetRange.topic))
          put.add(Bytes.toBytes("topic_partition_offset"),Bytes.toBytes("partition"),Bytes.toBytes(offsetRange.partition))
          put.add(Bytes.toBytes("topic_partition_offset"),Bytes.toBytes("offset"),Bytes.toBytes(offsetRange.untilOffset))
          putList = put+:putList
         // println("add data success !")
        }

        println("the RDD records are "+rdd.map{x =>URLDecoder.decode(x.value())}.collect.foreach(println)) // 程序的计算逻辑
      //  }
      table.put(putList)
      table.flushCommits()
      println("add and compute data success !")
      }
    ssc.start()
    ssc.awaitTermination()
  }
}

参考链接 :

(基于最新的Kafka version 0.10.2 new consumer API )想要Spark Streaming精确一次消费Topic?拿去不谢,记得点赞和分享! – 简书

实现的Spark Streaming代码如下(ConsumerRecord类不能序列化,使用时要注意,不要分发该类到其他工作节点上,避免错误打印)

三、存储在redis(基于内存)读写更快,


2、多个服务器分区,多个组消费组,设计key: 主题_分组;  分区;   value :offset

gtKey=groupid/topic作为唯一标识

conn.hset(gtKey, partition.toString, offset.toString)


spark Streaming +kafka 的offset数据保存hbase或redis – 程序员大本营

 object KafkaDricteRedis {

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("redis").setMaster("local[*]")
    val ssc = new StreamingContext(conf, new Duration(5000))

    val groupid = "GB01" //组名
    val topic = "wordcount3"
    //topic 名
    //在redis中以 groupid/topic作为唯一标识 ,存储分区偏移量
    //在Reids 使用的时hash类型来存储
    val gtKey = groupid + "/" + topic
    //topic
    val topics = Set(topic)
    //zk地址
    val zkQuorum = "hadoop01:2181,hadoop02:2181,hadoop03:2181"
    //brokerList
    val brokerList = "hadoop01:9092,hadoop03:9092"

    val kafkaParams = Map(
      // metadata.broker.list
      "metadata.broker.list" -> brokerList,
      "group.id" -> groupid,
      "auto.offset.reset" -> kafka.api.OffsetRequest.SmallestTimeString
      //从头开始消费
    )
    //记录topic 、分区对应的偏移量偏移量,在创建InputDStream时作为参数传如
    //从这个偏移量开始读取
    var fromOffset: Map[TopicAndPartition, Long] = Map[TopicAndPartition, Long]()
    var offsets =   Map[TopicPartition, Long]()

    var kafkaDStream: InputDStream[(String, String)] = null
    //	获取一个jedis连接
    val conn = getConnection()
    // conn.flushDB()
    //jd.hget(groupid+topic,"")
    //获取全部的keys
    val values: util.Set[String] = conn.keys("*")
    //println(values)
    // [GB01/wordcount3]   分区数   偏移量
    //如果keys中包含 GB01/wordcount3这样的key,则表示以前读取过
    if (values.contains(gtKey)) {
      //获取key 为GB01/wordcount3 下面所对应的(k,v)
      var allKey: util.Map[String, String] = conn.hgetAll(gtKey)
      //导入后,可以把Java中的集合转换为Scala中的集合
      import scala.collection.JavaConversions._
      var list: List[(String, String)] = allKey.toList
      //循环得到的(k,v)
      //这里面的 k 对应的是分区, v对应的是偏移量
      for (key <- list) { //这里的key是一个tuple类型
        //new一个TopicAndPartition 把 topic 和分区数传入
        val tp = new TopicAndPartition(topic, key._1.toInt)
        //把每个topic 分区 对应的偏移量传入
        fromOffset += tp -> key._2.toLong

        // 把数据库中的偏移量数据加载了
        val p = key._1.toInt
        val f =  key._2.toLong
//        offsets += (new TopicPartition(topic,p)-> f)
        val partition: TopicPartition = new TopicPartition(topic, p)
        offsets.put(partition, f)


      }
      //这里的是把数据(key ,value)是kafka 的key默认是null,
      //value 是kafka中的value
      val messageHandler = (mmd: MessageAndMetadata[String, String]) => {
        (mmd.key(), mmd.message())
      }

      val stream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
        ssc,
        LocationStrategies.PreferConsistent,
        Subscribe[String, String](topics, kafkaParams, offsets)
      )
    } else {
      //如果以前没有读取过,创建一个新的InputDStream
      val stream = KafkaUtils.createDirectStream[String, String](
        ssc,
        PreferConsistent,
        Subscribe[String, String](topics, kafkaParams))
    }
    //用来更新偏移量,OffsetRange中可以获取分区及偏移量
    var OffsetRangs = Array[OffsetRange]()
    //
    kafkaDStream.foreachRDD(kafkaRDD => {
      //这里面的RDD是kafkaRDD ,可以转换为HasOffsetRange
      val ranges: HasOffsetRanges = kafkaRDD.asInstanceOf[HasOffsetRanges]
      OffsetRangs = ranges.offsetRanges
      //获取value,(key 默认是null,没有用)
      val map: RDD[String] = kafkaRDD.map(_._2)
      map.foreach(x => println(x + "==========================="))
      //更新偏移量
      for (o <- OffsetRangs) {
        //取出偏移量
        val offset = o.untilOffset
        //取出分区
        val partition = o.partition
        println("partition: " + partition)
        println("offset: " + offset)
        //把通过hset,把对应的partition和offset写入到redis中
        conn.hset(gtKey, partition.toString, offset.toString)
      }

    })

    ssc.start()
    ssc.awaitTermination()

  }

  //Jedis连接池
  def getConnection(): Jedis = {
    //new 一个JedisPoolConfig,用来设定参数
    val conf = new JedisPoolConfig()
    val pool = new JedisPool(conf, "hadoop01", 6379)
    //最大连接数
    conf.setMaxTotal(20)
    //最大空闲数
    conf.setMaxIdle(20)

    val jedis = pool.getResource()
    //密码
    jedis.auth("123")
    jedis
  } 
}
object direct_offset_redis {
  // 过滤日志
  Logger.getLogger("org").setLevel(Level.WARN)

  def main(args: Array[String]): Unit = {
    val Array(topic, brokers, group, sec) = args
    val conf = new SparkConf().setAppName("direct_offset_redis").setMaster("local[2]")
      //每秒钟每个分区kafka拉取消息的速率
      .set("spark.streaming.kafka.maxRatePerPartition", "100")
      // 序列化
      .set("spark.serilizer", "org.apache.spark.serializer.KryoSerializer")
    val ssc = new StreamingContext(conf, Seconds(sec.toInt))
    //每多少秒对数据进行切分形成一个RDD
    val topics = Array(topic)

    //配置连接Kafka的参数
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> brokers,
      // kafka的key和value的解码方式
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> group,
      // 从头开始消费
      "auto.offset.reset" -> "earliest", //"latest"
      "enable.auto.commit" -> (false: lang.Boolean)
    )
    //启动二参数设置  (获取Redis中的kafka偏移量)
    var formdbOffset: Map[TopicPartition, Long] = JedisOffset(group)
    //拉取kafka数据
    val stream: InputDStream[ConsumerRecord[String, String]] =
    // 首先判断一下 我们要消费的kafka数据是否是第一次消费,之前有没有消费过
      if (formdbOffset.size == 0) {
        KafkaUtils.createDirectStream[String, String](
          ssc,
          LocationStrategies.PreferConsistent,
          ConsumerStrategies.Subscribe[String, String](topics, kafkaParams)
        )
      } else {
        KafkaUtils.createDirectStream(
          ssc,
          LocationStrategies.PreferConsistent,
          //          ConsumerStrategies.Assign[String, String](formdbOffset.keys, kafkaParams, formdbOffset)
          ConsumerStrategies.Subscribe[String, String](topics, kafkaParams, formdbOffset) //消费策略,源码强烈推荐使用该策略
        )
      }
    //数据偏移量处理。
    stream.foreachRDD({
      rdd =>
        // 获得偏移量对象数组
        val offsetRange: Array[OffsetRange] =
          rdd.asInstanceOf[HasOffsetRanges].offsetRanges
        //业务代码
        rdd.map(_.value())
          .map((_, 1))
          .reduceByKey(_ + _).foreach(println)
        // 偏移量存入redis
        val jedis: Jedis = JedisConnectionPool.getConnection()
        for (or <- offsetRange) {
          jedis.hset(group, or.topic + "-" + or.partition, or.untilOffset.toString)
        }
        jedis.close()
    })
    // 启动Streaming程序
    ssc.start()
    ssc.awaitTermination()
  }

  object JedisOffset {
    def apply(groupId: String) = {
      // 创建Map形式的Topic、partition、Offset
      var formdbOffset = Map[TopicPartition, Long]()
      //获取Jedis连接
      val jedis1 = JedisConnectionPool.getConnection()
      // 查询出Redis中的所有topic partition
      val topicPartitionOffset: util.Map[String, String] = jedis1.hgetAll(groupId)
      // 导入隐式转换
      import scala.collection.JavaConversions._
      // 将Redis中的Topic下的partition中的offset转换成List
      val topicPartitionOffsetlist: List[(String, String)] =
        topicPartitionOffset.toList
      // 循环处理所有的数据
      for (topicPL <- topicPartitionOffsetlist) {
        val split: Array[String] = topicPL._1.split("[-]")
        formdbOffset += (
          new TopicPartition(split(0), split(1).toInt) -> topicPL._2.toLong)
      }
      formdbOffset
    }
  }

}

四、kafka保存偏移量到zookeeper

object othersUtil {
 // todo kafka保存偏移量到zookeeper
 def kafkaAndZookeeper(ssc: StreamingContext): DStream[String] = {

val group = "DirectAndZk"
val topic = "apkmsg"
val brokerList = "hadoop1:9092"
val zkQuorum = "hadoop1:2181,hadoop2:2181,hadoop3:2181"
val topics: Set[String] = Set(topic)
val topicDirs = new ZKGroupTopicDirs(group, topic)
val zkTopicPath = s"${topicDirs.consumerOffsetDir}"

val kafkaParams = Map(
  "metadata.broker.list" -> brokerList,
  "group.id" -> group,
  "auto.offset.reset" -> kafka.api.OffsetRequest.LargestTimeString
)

val zkClient = new ZkClient(zkQuorum)
val children = zkClient.countChildren(zkTopicPath)
var kafkaStream: InputDStream[(String, String)] = null
var fromOffsets: Map[TopicAndPartition, Long] = Map()

if (children > 0) {
  for (i <- 0 until children) {
    val partitionOffset = zkClient.readData[String](s"$zkTopicPath/${i}")
    val tp = TopicAndPartition(topic, i)
    fromOffsets += (tp -> partitionOffset.toLong)
  }
  val messageHandler = (mmd: MessageAndMetadata[String, String]) => (mmd.key(), mmd.message())
  kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder, (String, String)](ssc, kafkaParams, fromOffsets, messageHandler)
} else {
  kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)
}

var offsetRanges = Array[OffsetRange]()
kafkaStream.foreachRDD { kafkaRDD =>
  offsetRanges = kafkaRDD.asInstanceOf[HasOffsetRanges].offsetRanges
  for (o <- offsetRanges) {
    val zkPath = s"${topicDirs.consumerOffsetDir}/${o.partition}"
    ZkUtils.updatePersistentPath(zkClient, zkPath, o.untilOffset.toString)
  }
}

val streamrdd = kafkaStream.map(_._2)
streamrdd
  }
}
 
object kafkazookeeper {
 def main(args: Array[String]): Unit = {
Logger.getLogger("org").setLevel(Level.WARN)
val conf = new SparkConf().setAppName("KafkaDirectWordCount")
  .setMaster("local[6]")
val ssc = new StreamingContext(conf, Seconds(5))

othersUtil.kafkaAndZookeeper(ssc)
  .flatMap(_.split(" ")).map(x => (x, 1)).reduceByKey(_ + _)
  .foreachRDD(x => {
    println("****************************************")
    println(x.collect().mkString("\n"))
    println("****************************************")
  })

ssc.start()
ssc.awaitTermination()
  }
}

手动输入kafka源数据

369 963 666

5 5 5

6 6 6

0 0 0

5 5 5

6 6 6

0 0 0

zw zw zw zw

zw zw zw zw

55 55 55

结果

(0,6)

(5,6)

(6,6)

(zw,8)

(55,3)

(963,1)

(666,1)

(369,1)

package com.kafka_mysql

/** 使用Spark-Kafka-0-10版本整合,并手动提交偏移量,维护到Zookeeper中 
  */

//手动控制spark 消费 kafka的偏移度
//保证spark在意外退出时,重启程序数据不丢失

object direct_offset_zookeeper {

  Logger.getLogger("org").setLevel(Level.WARN)

  //zookeeper 实例化,方便后面对zk的操作
  val zk = ZkWork

  def main(args: Array[String]): Unit = {

    val Array(brokers, topic, group, sec) = args

    val conf = new SparkConf().setAppName("direct_offset_zookeeper").setMaster("local[*]")
    val sc = new SparkContext(conf)
    val ssc = new StreamingContext(sc, Seconds(sec.toInt))

    val topics = Array(topic)
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> brokers,
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> group,
      "auto.offset.reset" -> "earliest", //"latest",
      "enable.auto.commit" -> (false: java.lang.Boolean)
      //你可以通过增大会话时间(max.poll.interval.ms)
      // 或者减小poll()方法处理的最大记录条数(max.poll.records)
      //"max.poll.interval.ms" -> "KAFKA_MAX_POLL_INTERVAL_MS",
      //"max.poll.records" -> "KAFKA_MAX_POLL_RECORDS"
    )


    //    判断zk中是否有保存过该计算的偏移量
    //    如果没有保存过,使用不带偏移量的计算,在计算完后保存
    //    精髓就在于KafkaUtils.createDirectStream这个地方
    //    默认是KafkaUtils.createDirectStream[String, String](ssc, PreferConsistent, Subscribe[String, String](topics, kafkaParams)),不加偏移度参数
    //    实在找不到办法,最后啃了下源码。发现可以使用偏移度参数


    val stream = if (zk.znodeIsExists(s"${topic}offset")) {
      val nor = zk.znodeDataGet(s"${topic}offset")
      val newOffset = Map(new TopicPartition(nor(0).toString, nor(1).toInt) -> nor(2).toLong) //创建以topic,分区为k 偏移度为v的map

      println(s"[ DealFlowBills2 ] --------------------------------------------------------------------")
      println(s"[ DealFlowBills2 ] topic ${nor(0).toString}")
      println(s"[ DealFlowBills2 ] Partition ${nor(1).toInt}")
      println(s"[ DealFlowBills2 ] offset ${nor(2).toLong}")
      println(s"[ DealFlowBills2 ] zk中取出来的kafka偏移量★★★ $newOffset")
      println(s"[ DealFlowBills2 ] --------------------------------------------------------------------")
      KafkaUtils.createDirectStream[String, String](ssc, PreferConsistent, Subscribe[String, String](topics, kafkaParams, newOffset))
    } else {
      println(s"[ DealFlowBills2 ] --------------------------------------------------------------------")
      println(s"[ DealFlowBills2 ] 第一次计算,没有zk偏移量文件")
      println(s"[ DealFlowBills2 ] 手动创建一个偏移量文件 ${topic}offset 默认从0号分区 0偏移度开始计算")
      println(s"[ DealFlowBills2 ] --------------------------------------------------------------------")
      zk.znodeCreate(s"${topic}offset", s"$topic,0,0")
      val nor = zk.znodeDataGet(s"${topic}offset")
      val newOffset = Map(new TopicPartition(nor(0).toString, nor(1).toInt) -> nor(2).toLong)
      KafkaUtils.createDirectStream[String, String](ssc, PreferConsistent, Subscribe[String, String](topics, kafkaParams, newOffset))
    }


    //业务处理代码
    val lines = stream.map(_.value)
    val words = lines.flatMap(_.split(" "))
    val wordCounts = words.map(x => (x, 1L)).reduceByKey(_ + _)
    wordCounts.print()

    //保存偏移度部分
    //如果在计算的时候失败了,会接着上一次偏移度进行重算,不保存新的偏移度
    //计算成功后保存偏移度

    stream.foreachRDD {
      rdd =>
        val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
        rdd.foreachPartition {
          iter =>
            val o: OffsetRange = offsetRanges(TaskContext.get.partitionId)
            println(s"[ DealFlowBills2 ] --------------------------------------------------------------------")
            println(s"[ DealFlowBills2 ]  topic: ${o.topic}")
            println(s"[ DealFlowBills2 ]  partition: ${o.partition} ")
            println(s"[ DealFlowBills2 ]  fromOffset 开始偏移量: ${o.fromOffset} ")
            println(s"[ DealFlowBills2 ]  untilOffset 结束偏移量: ${o.untilOffset} 需要保存的偏移量,供下次读取使用★★★")
            println(s"[ DealFlowBills2 ] --------------------------------------------------------------------")
            // 写zookeeper
            zk.offsetWork(s"${o.topic}offset", s"${o.topic},${o.partition},${o.untilOffset}")

          // 写本地文件系统
          // val fw = new FileWriter(new File("/home/hadoop1/testjar/test.log"), true)
          // fw.write(offsetsRangerStr)
          // fw.close()
        }
    }

    //最后结果保存到hdfs
    //result.saveAsTextFiles(output + s"/output/" + "010")
    //spark streaming 开始工作
    ssc.start()
    ssc.awaitTermination()

  }
}

updateStateByKey

updateFunc

	import org.apache.spark.streaming.StreamingContext
	import org.apache.spark.SparkConf
	import org.apache.spark.streaming.kafka.KafkaUtils
	import org.apache.spark.streaming.Seconds
	import org.apache.spark.HashPartitioner
	object kafacount{
		//定义一个函数,可以将之前数据与现在数据累加
		//upStateByKey已经是分好组的数据。
		//String为单词,SparkStreaming是按批次操作,Seq是这个批次,每个单词产生的1,1,1,1(这里就是出现一个数据记录一个1)
		//option上一次单词出现的次数。为什么要用Option 因为第一次没有,可以使用getOrElse(0)
		def updateFunc=(it : Iterator[(String,Seq[int],Option[Int])]){
		it.flatMap(it=>Some(it._2.sum+it._3.getOrElse(0)).map(x=>(it._1,x)))
		//已经知道为3个参数,对应xyz。y当前输入value 然后做累加,z是之前输入value的计数 getOrElse(0)代表如果为第一次则Z默认为0。y+z就是输入数据的总次数
		it.flatMap{ case(x,y,z)=>some( y.sum+z.getOrElse(0).map(i=>(x,i)))
		}
		}
		def main(args:Array[String]){
		//设置输入日志
		LoggerLevels.setStreamingLogLevels()
		//设置输入的参数作为元组拿到
		val Array(zkQuorum,group,topics,numThreads)=args
		val conf =new 	SparkConf().setAppName("kafkacount").setMaster("local[2]")
		val sc= new StreamingContext(conf,seconds(5))
		//使用updateStateByKey必须要设置检查点
		sc.checkpoint("/home/hadoop/Data")
		//输入的topic肯能有多个然后进行切分,后与线程数映射成K V
		val topicMap=topics.split(",").map((_,numThreads.toInt)).toMap
		//用kafakUtils.createStream 主要拿kafka topic输入数据 
		//Streaming 配置, zk地址,组的名字,topic 
		val data=KafkaUtils.createStreami(sc,zkQuorum,group,topmicMap)	
		//在kafka生产者输入的值为value,因此要拿第二个数据_2,key是随意的
		//然后输入切分
		val word=data.map(_._2).flapMap(_.split(" "))
		//将数据作为key 然后每一个key对应一个1。
		//用updateStateByKey 计算数据总个数,不止是当前输入的,还会累加之前的数据
		//第一个参数为一个函数,定义为tpdateFunc
		//第二个是分区数,new一个HashPartitioner,指定一个分区数量sc.sparkContext.defultParallelism为默认分区数
		//第三个表示是不是要记住这个分区器
		val wordcount=word.map((_,1)).updateStateByKey(updateFunc,new HashPartitioner(sc.defultParallelism),true)
	}
	wordcount.print()
	sc.start()
	sc.awaitTermination()
	}



版权声明:本文为qq_22473611原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。