无人驾驶车需要更详细、精确的地图
Apollo 高精度地图源码
Navigation Map vs. HD Map
A high definition map contains a huge amount of driving assistance information
-
the accurate three-dimensional representation of the road network.
- the layouts of intersections and the locations of signposts.
-
a lot of
semantic
information.-
The map may report what different colors of
traffic lights
mean. -
It might also indicate the
speed limit
for a road. -
and where the
left turn lane begins.
-
The map may report what different colors of
-
precision
-
Navigation Map:
meter-level
precision. -
HD Map:
centimeter-level
precision.
-
Navigation Map:
Localization, Perception, Planing
video 1
无人驾驶车辆需要知道它在地图上的确切位置
首先,车辆可能会寻找
地标
。我们可以使用从各类
传感器
收集的数据,如摄像机图像数据,以及激光雷达收集的三维点云数据来
查找地标
。车辆将其收集的数据与其高精度地图上的已知地标进行
比较
。这一匹配过程是需要
预处理、坐标转换和数据融合
的复杂过程。
- Preprocessing eliminates inaccurate or poor quality data.
- Coordinate transformation converts the data from different perspectives(不同视角) into a uniform coordinate system(统一的坐标系).
-
Data fusion merges data from different vehicle and different types of sensors.
一旦无人驾驶车高度精确地确定了其位置,定位任务也就完成了。
video 2
perception
software relies on the high-definition map.
-
HD Map can feed
traffic light positions
to the rest of the software stack even if the sensors can’t detect the traffic light yet. -
HD Map will help the sensor
narrow it’s detection scope
. region of interest(ROI) can help us improve both detection accuracy and speed, saving computing resources for other tasks in the vehicle.
video 3
planning
software relies on the high-definition map.
Apollo HD Map
Apollo HD Map Construction
HD Maps Service
https://data.apollo.auto/hd_map_intro?locale=en-us
版权声明:本文为viglyh原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。