Opencv和C++实现canny边缘检测

  • Post author:
  • Post category:其他


Canny边缘检测主要包括:

  1. 图像的灰度化;

  2. 图像的高斯滤波,来平滑图像,同时消除和降低图像噪声的影响;

  3. 计算出每一个像素点位置的梯度(X方向梯度、Y方向梯度、已经该点的梯度幅值)和方向角度;Y方向和X方向梯度的比值,得出梯度方向,X梯度的平方和+Y梯度的平方和的值,再进行求平方得到该点的梯度幅值。(Sobel算子等)

  4. 局部非极大值抑制处理;梯度方向垂直于边缘方向,在梯度方向上进行非极大值抑制可以细化边缘,在梯度方向上比较该点前后两个点的梯度的大小,如果大于两个点则保留,小于任意一个点则置为0。

  5. 双阈值处理和连接处理;指定高低阈值,然后高阈值直接赋值为255,低阈值为0,中间的值进行连接处理。如果中间的值八邻域内有255,则该值也变为255,也就是说255往周围进行扩张,收集边缘加闭合边缘。

Canny算法思路参考下面的博客:


https://blog.csdn.net/dcrmg/article/details/52344902



https://www.cnblogs.com/love6tao/p/5152020.html

我在下面直接给出可以运行的C++代码(Opencv2.4.9)

#include <iostream>
#include "opencv2/opencv.hpp"

using namespace std;
using namespace cv;

/*
生成高斯卷积核 kernel
*/
void Gaussian_kernel(int kernel_size, int sigma, Mat &kernel)
{
    const double PI = 3.1415926;
    int m = kernel_size / 2;

    kernel = Mat(kernel_size, kernel_size, CV_32FC1);
    float s = 2 * sigma*sigma;
    for (int i = 0; i < kernel_size; i++)
    {
        for (int j = 0; j < kernel_size; j++)
        {
            int x = i - m;
            int y = j - m;

            kernel.at<float>(i, j) = exp(-(x*x + y*y) / s) / (PI*s);
        }
    }
}

/*
计算梯度值和方向
imageSource 原始灰度图
imageX X方向梯度图像
imageY Y方向梯度图像
gradXY 该点的梯度幅值
pointDirection 梯度方向角度
*/
void GradDirection(const Mat imageSource, Mat &imageX, Mat &imageY,Mat &gradXY, Mat &theta)
{
    imageX = Mat::zeros(imageSource.size(), CV_32SC1);
    imageY = Mat::zeros(imageSource.size(), CV_32SC1);
    gradXY = Mat::zeros(imageSource.size(), CV_32SC1);
    theta = Mat::zeros(imageSource.size(), CV_32SC1);

    int rows = imageSource.rows;
    int cols = imageSource.cols;

    int stepXY = imageX.step;
    int step = imageSource.step;
    /*
    Mat.step参数指图像的一行实际占用的内存长度,
    因为opencv中的图像会对每行的长度自动补齐(8的倍数),
    编程时尽量使用指针,指针读写像素是速度最快的,使用at函数最慢。
    */
    uchar *PX = imageX.data;
    uchar *PY = imageY.data;
    uchar *P = imageSource.data;
    uchar *XY = gradXY.data;
    for (int i = 1; i < rows - 1; i++)
    {
        for (int j = 1; j < cols - 1; j++)
        {
            int a00 = P[(i - 1)*step + j - 1];
            int a01 = P[(i - 1)*step + j];
            int a02 = P[(i - 1)*step + j + 1];

            int a10 = P[i*step + j - 1];
            int a11 = P[i*step + j];
            int a12 = P[i*step + j + 1];

            int a20 = P[(i + 1)*step + j - 1];
            int a21 = P[(i + 1)*step + j];
            int a22 = P[(i + 1)*step + j + 1];

            double gradY = double(a02 + 2 * a12 + a22 - a00 - 2 * a10 - a20);
            double gradX = double(a00 + 2 * a01 + a02 - a20 - 2 * a21 - a22);

            //PX[i*stepXY + j*(stepXY / step)] = abs(gradX);
            //PY[i*stepXY + j*(stepXY / step)] = abs(gradY);

            imageX.at<int>(i, j) = abs(gradX);
            imageY.at<int>(i, j) = abs(gradY);
            if (gradX == 0)
            {
                gradX = 0.000000000001;
            }
            theta.at<int>(i, j) = atan(gradY / gradX)*57.3;
            theta.at<int>(i, j) = (theta.at<int>(i, j) + 360) % 360;
            gradXY.at<int>(i, j) = sqrt(gradX*gradX + gradY*gradY);
            //XY[i*stepXY + j*(stepXY / step)] = sqrt(gradX*gradX + gradY*gradY);
        }

    }
    convertScaleAbs(imageX, imageX);
    convertScaleAbs(imageY, imageY);
    convertScaleAbs(gradXY, gradXY);

}

/*
局部非极大值抑制
沿着该点梯度方向,比较前后两个点的幅值大小,若该点大于前后两点,则保留,
若该点小于前后两点任意一点,则置为0;
imageInput 输入得到梯度图像
imageOutput 输出的非极大值抑制图像
theta 每个像素点的梯度方向角度
imageX X方向梯度
imageY Y方向梯度 
*/
void NonLocalMaxValue(const Mat imageInput, Mat &imageOutput, const Mat &theta, const Mat &imageX, const Mat &imageY)
{
    imageOutput = imageInput.clone();


    int cols = imageInput.cols;
    int rows = imageInput.rows;

    for (int i = 1; i < rows - 1; i++)
    {
        for (int j = 1; j < cols - 1; j++)
        {
            if (0 == imageInput.at<uchar>(i, j))continue;

            int g00 = imageInput.at<uchar>(i - 1, j - 1);
            int g01 = imageInput.at<uchar>(i - 1, j);
            int g02 = imageInput.at<uchar>(i - 1, j + 1);

            int g10 = imageInput.at<uchar>(i , j - 1);
            int g11 = imageInput.at<uchar>(i, j);
            int g12 = imageInput.at<uchar>(i , j + 1);

            int g20 = imageInput.at<uchar>(i + 1, j - 1);
            int g21 = imageInput.at<uchar>(i + 1, j);
            int g22 = imageInput.at<uchar>(i + 1, j + 1);

            int direction = theta.at<int>(i, j); //该点梯度的角度值
            int g1 = 0; 
            int g2 = 0;
            int g3 = 0;
            int g4 = 0;
            double tmp1 = 0.0; //保存亚像素点插值得到的灰度数
            double tmp2 = 0.0;
            double weight = fabs((double)imageY.at<uchar>(i, j) / (double)imageX.at<uchar>(i, j));

            if (weight == 0)weight = 0.0000001;
            if (weight > 1)
            {
                weight = 1 / weight;
            }
            if ((0 <= direction && direction < 45) || 180 <= direction &&direction < 225)
            {
                tmp1 = g10*(1 - weight) + g20*(weight);
                tmp2 = g02*(weight)+g12*(1 - weight);
            }
            if ((45 <= direction && direction < 90) || 225 <= direction &&direction < 270)
            {
                tmp1 = g01*(1 - weight) + g02*(weight);
                tmp2 = g20*(weight)+g21*(1 - weight);
            }
            if ((90 <= direction && direction < 135) || 270 <= direction &&direction < 315)
            {
                tmp1 = g00*(weight)+g01*(1 - weight);
                tmp2 = g21*(1 - weight) + g22*(weight);
            }
            if ((135 <= direction && direction < 180) || 315 <= direction &&direction < 360)
            {
                tmp1 = g00*(weight)+g10*(1 - weight);
                tmp2 = g12*(1 - weight) + g22*(weight);
            }

            if (imageInput.at<uchar>(i, j) < tmp1 || imageInput.at<uchar>(i, j) < tmp2)
            {
                imageOutput.at<uchar>(i,j) = 0;
            }
        }
    }

}

/*
双阈值的机理是:
指定一个低阈值A,一个高阈值B,一般取B为图像整体灰度级分布的70%,且B为1.5到2倍大小的A;
灰度值小于A的,置为0,灰度值大于B的,置为255;
*/
void DoubleThreshold(Mat &imageInput, const double lowThreshold, const double highThreshold)
{
    int cols = imageInput.cols;
    int rows = imageInput.rows;
    for (int i = 0; i < rows; i++)
    {
        for (int j = 0; j < cols; j++)
        {
            double temp = imageInput.at<uchar>(i, j);
            temp = temp>highThreshold ? (255) : (temp);
            temp = temp < lowThreshold ? (0) : (temp);
            imageInput.at<uchar>(i, j) = temp;
        }
    }

}
/*
连接处理:
灰度值介于A和B之间的,考察该像素点临近的8像素是否有灰度值为255的,
若没有255的,表示这是一个孤立的局部极大值点,予以排除,置为0;
若有255的,表示这是一个跟其他边缘有“接壤”的可造之材,置为255,
之后重复执行该步骤,直到考察完之后一个像素点。

其中的邻域跟踪算法,从值为255的像素点出发找到周围满足要求的点,把满足要求的点设置为255,
然后修改i,j的坐标值,i,j值进行回退,在改变后的i,j基础上继续寻找255周围满足要求的点。
当所有连接255的点修改完后,再把所有上面所说的局部极大值点置为0;(算法可以继续优化)。

参数1,imageInput:输入和输出的梯度图像
参数2,lowTh:低阈值
参数3,highTh:高阈值
*/
void DoubleThresholdLink(Mat &imageInput,double lowTh,double highTh)
{
    int cols = imageInput.cols;
    int rows = imageInput.rows;

    for (int i = 1; i < rows - 1; i++)
    {
        for (int j = 1; j < cols - 1; j++)
        {
            double pix = imageInput.at<uchar>(i, j);
            if (pix != 255)continue;
            bool change = false;
            for (int k = -1; k <= 1; k++)
            {
                for (int u = -1; u <= 1; u++)
                {
                    if (k == 0 && u == 0)continue;
                    double temp = imageInput.at<uchar>(i + k, j + u);
                    if (temp >= lowTh && temp <= highTh)
                    {
                        imageInput.at<uchar>(i + k, j + u) = 255;
                        change = true;
                    }
                }
            }
            if (change)
            {
                if (i > 1)i--;
                if (j > 2)j -= 2;

            }
        }
    }

    for (int i = 0; i < rows; i++)
    {
        for (int j = 0; j < cols; j++)
        {
            if (imageInput.at<uchar>(i, j) != 255)
            {
                imageInput.at<uchar>(i, j) = 0;
            }
        }
    }
}


int main()
{
    Mat image = imread("test.jpg");
    imshow("origin image", image);

    //转换为灰度图
    Mat grayImage;
    cvtColor(image, grayImage, CV_RGB2GRAY);
    imshow("gray image", grayImage);

    //高斯滤波
    Mat gausKernel;
    int kernel_size = 5;
    double sigma = 1;
    Gaussian_kernel(kernel_size, sigma, gausKernel);
    Mat gausImage;
    filter2D(grayImage, gausImage, grayImage.depth(), gausKernel);
    imshow("gaus image", gausImage);

    //计算XY方向梯度
    Mat imageX, imageY, imageXY;
    Mat theta;
    GradDirection(grayImage, imageX, imageY, imageXY , theta);
    imshow("XY grad", imageXY);

    //对梯度幅值进行非极大值抑制
    Mat localImage;
    NonLocalMaxValue(imageXY, localImage, theta,imageX,imageY);;
    imshow("Non local maxinum image", localImage);

    //双阈值算法检测和边缘连接
    DoubleThreshold(localImage, 60, 100);
    DoubleThresholdLink(localImage, 60, 100);
    imshow("canny image", localImage);

    Mat temMat;
    Canny(image, temMat, 60, 100);
    imshow("opencv canny image", temMat);

    waitKey(0);
    return 0;
}



版权声明:本文为u010551600原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。