数学相关
机器学习需要线性代数知识
SVD介绍
对偶问题
PCA
仿射变换
核函数
凸优化
林轩田机器学习课程笔记
林轩田之机器学习课程笔记(when can machines learn之learning problem)(32之1)
林轩田之机器学习课程笔记(when can machines learn之learning to answer yes or no)(32之2)
林轩田之机器学习课程笔记(when can machines learn之types of learning)(32之3)
林轩田之机器学习课程笔记(when can machines learn之feasibility of learning)(32之4)
林轩田之机器学习课程笔记(why can machines learn之training versus testing)(32之5)
林轩田之机器学习课程笔记(why can machines learn之theory of generalization)(32之6)
林轩田之机器学习课程笔记(why can machines learn之the VC dimension)(32之7)
林轩田之机器学习课程笔记(why can machines learn之noise and error)(32之8)
林轩田之机器学习课程笔记( how can machines learn之linear regression)(32之9)
林轩田之机器学习课程笔记( how can machines learn之logistic regression)(32之10)
林轩田之机器学习课程笔记( how can machines learn之linear models for classification)(32之11)
林轩田之机器学习课程笔记( how can machines learn之nonlinear transformation)(32之12)
林轩田之机器学习课程笔记( how can machines learn better之hazard of overfitting)(32之13)
林轩田之机器学习课程笔记( how can machines learn better之regularization)(32之14)
林轩田之机器学习课程笔记( how can machines learn better之validation)(32之15)
林轩田之机器学习课程笔记( how can machines learn better之three learning principles)(32之16)
林轩田之机器学习课程笔记( embedding numerous feature之linear support vector machine )(32之17)
林轩田之机器学习课程笔记( embedding numerous feature之dual support vector machine)(32之18)
林轩田之机器学习课程笔记( embedding numerous feature之kernel support vector machine)(32之19)
林轩田之机器学习课程笔记( embedding numerous feature之 soft-margin support vector machine)(32之20)
林轩田之机器学习课程笔记( embedding numerous feature之 kernel logistic regression)(32之21)
林轩田之机器学习课程笔记( embedding numerous feature之support vector regression)(32之22)
林轩田之机器学习课程笔记( combining predictive features之blending and bagging)(32之23)
林轩田之机器学习课程笔记( combining predictive features之 adaptive boosting)(32之24)
林轩田之机器学习课程笔记( combining predictive features之 decision tree)(32之25)
林轩田之机器学习课程笔记( combining predictive features之 random forest)(32之26)
林轩田之机器学习课程笔记( combining predictive features之gradient boosted decision tree)(32之27)
林轩田之机器学习课程笔记( distilling hidden features之neural network)(32之28)
林轩田之机器学习课程笔记( distilling hidden features之deep learning)(32之29)
林轩田之机器学习课程笔记( distilling hidden features之radial basis function network)(32之30)
林轩田之机器学习课程笔记( distilling hidden features之matrix factorization)(32之31)
林轩田之机器学习课程笔记( distilling hidden features之final)(32之32)
深度学习hinton课程笔记(整理中)
深度学习
深度学习之CNN简介
keras使用tensorflow为backend进行 fashion_mnist 分类器
kaggle
Kaggle (Bike Sharing Demand)top20%
kaggle titanic 机器学习流程 top30%
kaggle优胜者代码
NLP
算法实现
感知机模型实现
k-means 实现
决策树3.0实现
SVM smo算法
LR算法python实现
java三种矩阵乘法
GBDT原理及利用GBDT构造新的特征-Python实现
other
机器学习流程(转)
机器学习系统模型调优实战–所有调优技术都附相应的scikit-learn实现
深入FFM原理与实践(美团点评技术)