由中序后序序列求前序序列
我们知道如何按照三种深度优先次序来周游一棵二叉树,来得到中根序列、前根序列和后根序列。反过来,如果给定二叉树的中根序列和后根序列,或者给定中根序列和前根序列,可以重建一二叉树。本题输入一棵二叉树的中根序列和后根序列,要求在内存中重建二叉树,最后输出这棵二叉树的前根序列。
用不同的整数来唯一标识二叉树的每一个结点,下面的二叉树
中根序列是9 5 32 67
后根序列9 32 67 5
前根序列5 9 67 32
输入
两行。第一行是二叉树的中根序列,第二行是后根序列。每个数字表示的结点之间用空格隔开。结点数字范围0~65535。暂不必考虑不合理的输入数据。
输出
一行。由输入中的中根序列和后根序列重建的二叉树的前根序列。每个数字表示的结点之间用空格隔开。
样例输入
9 5 32 67
9 32 67 5
样例输出
5 9 67 32
解题思路:用递归,先处理根节点,在处理左子树,再处理右子树,将后序序列作为查找条件,然后将中序序列分成左右子树两部分递归查找输出,要注意递归的结束条件。
#include<iostream>
using namespace std;
int a[100], b[100];
void find(int f1, int e1, int f2, int e2) {
int i;
cout << b[e2]<<" ";
if (f1 == e1) //递归结束条件
return;
for (i = f1; i <= e1; i++)
if (a[i] == b[e2])
break;
if(i>0)
find(f1, i-1, f2,f2+(i-1)-f1);
if(i<e1)
find(i + 1, e1, f2+i-f1, e2 - 1);
}
int main() {
int i=0;
while (cin >> a[i++]) {
if (cin.get() != ' ')
break;
}
int j = 0;
while (cin >> b[j++]) {
if (cin.get() != ' ')
break;
}
find(0, i-1, 0, j-1);
return 0;
}
版权声明:本文为qq_54862543原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。