有关2pc, 3pc,Tcc 的理解

  • Post author:
  • Post category:其他


对于分布式事务的概念,可能还会有很多同学不理解或者理解得不是很深刻的地方,在这篇文章中,作者打算重点给大家先介绍下分布式事务相关的基本概念,诸如2PC、3PC、TCC之类的基本问题。



1. 二阶段提交协议(2PC)

牧师:”你愿意娶这个女人吗?爱她、忠诚于她,无论她贫困、患病或者残疾,直至死亡。Doyou(你愿意吗)?”

新郎:”Ido(我愿意)!”

牧师:”你愿意嫁给这个男人吗?爱他、忠诚于他,无论他贫困、患病或者残疾,直至死亡。Doyou(你愿意吗)?”

新娘:”Ido(我愿意)!”

牧师:现在请你们面向对方,握住对方的双手,作为妻子和丈夫向对方宣告誓言。

新郎:我——某某某,全心全意娶你做我的妻子,无论是顺境或逆境,富裕或贫穷,健康或疾病,快乐或忧愁,我都将毫无保留地爱你,我将努力去理解你,完完全全信任你。我们将成为一个整体,互为彼此的一部分,我们将一起面对人生的一切,去分享我们的梦想,作为平等的忠实伴侣,度过今后的一生。

新娘:我全心全意嫁给你作为你的妻子,无论是顺境或逆境,富裕或贫穷,健康或疾病,快乐或忧愁,我都将毫无保留的爱你,我将努力去理解你,完完全全信任你,我们将成为一个整体,互为彼此的一部分,我们将一起面对人生的一切,去分享我们的梦想,作为平等的忠实伴侣,度过今后的一生。

上面这个比较经典的桥段就是一个典型的二阶段提交过程。



2PC存在的问题

2PC在执行过程中可能发生协调者或者参与者突然宕机的情况,在不同时期宕机可能有不同的现象。


情况一:协调者挂了,参与者没挂


这种情况其实比较好解决,只要找一个协调者的替代者。当他成为新的协调者的时候,询问所有参与者的最后那条事务的执行情况,他就可以知道是应该做什么样的操作了。所以,这种情况不会导致数据不一致。


情况二:参与者挂了,协调者没挂


这种情况其实也比较好解决。如果协调者挂了。那么之后的事情有两种情况:

  1. 第一个是挂了就挂了,没有再恢复。那就挂了呗,反正不会导致数据一致性问题。
  2. 第二个是挂了之后又恢复了,这时如果他有未执行完的事务操作,直接取消掉,然后询问协调者目前我应该怎么做,协调者就会比对自己的事务执行记录和该参与者的事务执行记录,告诉他应该怎么做来保持数据的一致性。


情况三:参与者挂了,协调者也挂了


这种情况比较复杂,我们分情况讨论。



1) 协调者和参与者在第一阶段挂了。

由于这时还没有执行commit操作,新选出来的协调者可以询问各个参与者的情况,再决定是进行commit还是roolback。因为还没有commit,所以不会导致数据一致性问题。



2)第二阶段协调者和参与者挂了,挂了的这个参与者在挂之前并没有接收到协调者的指令,或者接收到指令之后还没来的及做commit或者roolback操作。

这种情况下,当新的协调者被选出来之后,他同样是询问所有的参与者的情况。只要有机器执行了abort(roolback)操作或者第一阶段返回的信息是No的话,那就直接执行roolback操作。如果没有人执行abort操作,但是有机器执行了commit操作,那么就直接执行commit操作。这样,当挂掉的参与者恢复之后,只要按照协调者的指示进行事务的commit还是roolback操作就可以了。因为挂掉的机器并没有做commit或者roolback操作,而没有挂掉的机器们和新的协调者又执行了同样的操作,那么这种情况不会导致数据不一致现象。



3)第二阶段协调者和参与者挂了,挂了的这个参与者在挂之前已经执行了操作。但是由于他挂了,没有人知道他执行了什么操作。

这种情况下,新的协调者被选出来之后,如果他想负起协调者的责任的话他就只能按照之前那种情况来执行commit或者roolback操作。这样新的协调者和所有没挂掉的参与者就保持了数据的一致性,我们假定他们执行了commit。但是,这个时候,

那个挂掉的参与者恢复了怎么办,因为他之前已经执行完了之前的事务,如果他执行的是commit那还好,和其他的机器保持一致了,万一他执行的是roolback操作呢

?这不就导致数据的不一致性了么?虽然这个时候可以再通过手段让他和协调者通信,再想办法把数据搞成一致的,但是,这段时间内他的数据状态已经是不一致的了!

所以,2PC协议中,如果出现协调者和参与者都挂了的情况,有可能导致数据不一致。



2. 三阶段提交协议(3PC)

3PC最关键要解决的就是协调者和参与者同时挂掉的问题,所以3PC把2PC的准备阶段再次一分为二,这样三阶段提交就有CanCommit、PreCommit、DoCommit三个阶段。在第一阶段,只是询问所有参与者是否可可以执行事务操作,并不在本阶段执行事务操作。当协调者收到所有的参与者都返回YES时,在第二阶段才执行事务操作,然后在第三阶段在执行commit或者rollback。

班长要组织全班同学聚餐,由于大家毕业多年,所以要逐个打电话敲定时间,时间初定10.1日。然后开始逐个打电话。

班长:小A,我们想定在10.1号聚会,你有时间嘛?有时间你就说YES,没有你就说NO,然后我还会再去问其他人,具体时间地点我会再通知你,这段时间你可先去干你自己的事儿,不用一直等着我。(协调者询问事务是否可以执行,这一步不会锁定资源)

小A:好的,我有时间。(参与者反馈)

班长:小B,我们想定在10.1号聚会……不用一直等我。

班长收集完大家的时间情况了,一看大家都有时间,那么就再次通知大家。(协调者接收到所有YES指令)

班长:小A,我们确定了10.1号聚餐,你要把这一天的时间空出来,这一天你不能再安排其他的事儿了。然后我会逐个通知其他同学,通知完之后我会再来和你确认一下,还有啊,如果我没有特意给你打电话,你就10.1号那天来聚餐就行了。对了,你确定能来是吧?(协调者发送事务执行指令,这一步锁住资源。如果由于网络原因参与者在后面没有收到协调者的命令,他也会执行commit)

小A顺手在自己的日历上把10.1号这一天圈上了,然后跟班长说,我可以去。(参与者执行事务操作,反馈状态)

班长:小B,我们觉得了10.1号聚餐……你就10.1号那天来聚餐就行了。

班长通知完一圈之后。所有同学都跟他说:”我已经把10.1号这天空出来了”。于是,他在10.1号这一天又挨个打了一遍电话告诉他们:嘿,现在你们可以出门拉。。。。(协调者收到所有参与者的ACK响应,通知所有参与者执行事务的commit)

小A,小B:我已经出门拉。(执行commit操作,反馈状态)



3PC为什么比2PC好?

直接分析协调者和参与者都挂的情况。



3)第二阶段协调者和参与者挂了,挂了的这个参与者在挂之前已经执行了操作。但是由于他挂了,没有人知道他执行了什么操作。
  1. 这种情况下,当新的协调者被选出来之后,他同样是询问所有的参与者的情况来觉得是commit还是roolback。这看上去和二阶段提交一样啊?他是怎么解决一致性问题的呢?
  2. 看上去和二阶段提交的那种数据不一致的情况的现象是一样的,但仔细分析所有参与者的状态的话就会发现其实并不一样。我们假设挂掉的那台参与者执行的操作是commit。那么其他没挂的操作者的状态应该是什么?他们的状态要么是prepare-commit要么是commit。因为3PC的第三阶段一旦有机器执行了commit,那必然第一阶段大家都是同意commit。所以,这时,新选举出来的协调者一旦发现未挂掉的参与者中有人处于commit状态或者是prepare-commit的话,那就执行commit操作。否则就执行rollback操作。这样挂掉的参与者恢复之后就能和其他机器保持数据一致性了。(为了简单的让大家理解,笔者这里简化了新选举出来的协调者执行操作的具体细节,真实情况比我描述的要复杂)


简单概括一下就是,如果挂掉的那台机器已经执行了commit,那么协调者可以从所有未挂掉的参与者的状态中分析出来,并执行commit。如果挂掉的那个参与者执行了rollback,那么协调者和其他的参与者执行的肯定也是rollback操作。



3. 补偿事务(TCC)

说起分布式事务的概念,不少人都会搞混淆,似乎好像分布式事务就是TCC。实际上TCC与2PC、3PC一样,只是分布式事务的一种实现方案而已。

TCC(

Try-Confirm-Cancel

)又称补偿事务。其核心思想是:“针对每个操作都要注册一个与其对应的确认和补偿(撤销操作)”。它分为三个操作:

  1. Try阶段:主要是对业务系统做检测及资源预留。
  2. Confirm阶段:确认执行业务操作。
  3. Cancel阶段:取消执行业务操作。

TCC事务的处理流程与2PC两阶段提交类似,不过2PC通常都是在跨库的DB层面,而TCC本质上就是一个应用层面的2PC,需要通过业务逻辑来实现。这种分布式事务的实现方式的优势在于,可以

让应用自己定义数据库操作的粒度,使得降低锁冲突、提高吞吐量成为可能。

而不足之处则在于对应用的侵入性非常强,业务逻辑的每个分支都需要实现try、confirm、cancel三个操作。此外,其实现难度也比较大,需要按照网络状态、系统故障等不同的失败原因实现不同的回滚策略。为了满足一致性的要求,confirm和cancel接口还必须实现幂等。

在这里插入图片描述



总结一下各个方案的常见的使用场景

  1. 2PC/3PC:依赖于数据库,能够很好的提供强一致性和强事务性,但相对来说延迟比较高,比较适合传统的单体应用,在同一个方法中存在跨库操作的情况,不适合高并发和高性能要求的场景。
  2. TCC:适用于执行时间确定且较短,实时性要求高,对数据一致性要求高,比如互联网金融企业最核心的三个服务:交易、支付、账务。
  3. 本地消息表/MQ 事务:都适用于事务中参与方支持操作幂等,对一致性要求不高,业务上能容忍数据不一致到一个人工检查周期,事务涉及的参与方、参与环节较少,业务上有对账/校验系统兜底。
  4. Saga 事务:由于 Saga 事务不能保证隔离性,需要在业务层控制并发,适合于业务场景事务并发操作同一资源较少的情况。 Saga 相比缺少预提交动作,导致补偿动作的实现比较麻烦,例如业务是发送短信,补偿动作则得再发送一次短信说明撤销,用户体验比较差。Saga 事务较适用于补偿动作容易处理的场景。

转载: https://blog.csdn.net/yyd19921214/article/details/68953629