在网上浏览了很多根据经纬度去计算两点间距离的帖子和书籍。今天有时间整理一下!希望能帮助浏览本贴的程序员们!
第一种:百度算法(java版)网上其他博客也有
Python版
public static double max(double a, double b) {
if (a > b)
return a;
return b;
}
public static double min(double a, double c) {
if (a > c)
return c;
return a;
}
public static double lw(double a, double b, double c) {
// b != n && (a = Math.max(a, b));
// c != n && (a = Math.min(a, c));
a = max(a, b);
a = min(a, c);
return a;
}
public static double ew(double a, double b, double c) {
while (a > c) {
a = a – (c – b);
}
while (a < b) {
a = a + (c – b);
}
return a;
}
public static double oi(double a) {
return Math.PI * a / 180;
}
public static double Td(double a, double b, double c, double d) {
return 6370996.81 * Math.acos(Math.sin(c) * Math.sin(d) + Math.cos(c) * Math.cos(d) * Math.cos(b – a));
}
public static double Wv(Point a, Point b) {
double ew = ew(a.getY(), -180, 180);
double lw = lw(a.getX(), -74, 74);
double ew2 = ew(b.getY(), -180, 180);
double lw2 = lw(b.getX(), -74, 74);
return Td(oi(ew), oi(ew2), oi(lw), oi(lw2));
}
public static double getDistance(Point a, Point b) {
double c = Wv(a, b);
return c / 1000;
}
第二种:椭球体算法(最为精确)
public static String BLANK = “”;
public static String ZERO = “0”;
private static double EARTH_RADIUS = 6378.137;
/**
* VincentyConstants Constants for Vincenty functions.
*/
public static double vincentyConstantA = 6378137;
public static double vincentyConstantB = 6356752.314245;
public static double vincentyConstantF = 1 / 298.257223563;
// 根据两个点坐标计算它们之间的距离(按照圆球体计算,粗略计算)
public static double getDistanceBySphere(double y1, double x1, double y2, double x2) {
double rady1 = rad(y1);
double rady2 = rad(y2);
double a = rady1 – rady2;
double b = rad(x1) – rad(x2);
double s = 2 * Math.asin(Math
.sqrt(Math.pow(Math.sin(a / 2), 2) + Math.cos(rady1) * Math.cos(rady2) * Math.pow(Math.sin(b / 2), 2)));
s = s * EARTH_RADIUS;
s = (double) (Math.round(s * 10000) / 10000);
return s;
}
// 转换弧度
private static double rad(double d) {
return d * Math.PI / 180.0;
}
/**
* Given two objects representing points with geographic coordinates, this
* calculates the distance between those points on the surface of an
* ellipsoid. 按照椭球体计算,精确计算
*
* Returns: The distance (in km) between the two input points as measured on
* an ellipsoid. Note that the input point objects must be in geographic
* coordinates (decimal degrees) and the return distance is in kilometers.
*/
public static double distVincenty(double y1, double x1, double y2, double x2) {
double a = vincentyConstantA;
double b = vincentyConstantB;
double f = vincentyConstantF;
double L = degtoRad(x2 – x1);
double U1 = Math.atan((1 – f) * Math.tan(degtoRad(y1)));
double U2 = Math.atan((1 – f) * Math.tan(degtoRad(y2)));
double sinU1 = Math.sin(U1);
double cosU1 = Math.cos(U1);
double sinU2 = Math.sin(U2);
double cosU2 = Math.cos(U2);
double lambda = L;
double lambdaP = 2 * Math.PI;
double iterLimit = 20;
double sinLambda = 0.0d;
double cosLambda = 0.0d;
double sinSigma = 0.0d;
double cosSigma = 0.0d;
double sigma = 0.0d;
double alpha = 0.0d;
double cosSqAlpha = 0.0d;
double cos2SigmaM = 0.0d;
double C = 0.0d;
while (Math.abs(lambda – lambdaP) > 1e-12 && –iterLimit > 0) {
sinLambda = Math.sin(lambda);
cosLambda = Math.cos(lambda);
sinSigma = Math.sqrt((cosU2 * sinLambda) * (cosU2 * sinLambda)
+ (cosU1 * sinU2 – sinU1 * cosU2 * cosLambda) * (cosU1 * sinU2 – sinU1 * cosU2 * cosLambda));
if (sinSigma == 0) {
return 0; // co-incident points
}
cosSigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda;
sigma = Math.atan2(sinSigma, cosSigma);
alpha = Math.asin(cosU1 * cosU2 * sinLambda / sinSigma);
cosSqAlpha = Math.cos(alpha) * Math.cos(alpha);
cos2SigmaM = cosSigma – 2 * sinU1 * sinU2 / cosSqAlpha;
C = f / 16 * cosSqAlpha * (4 + f * (4 – 3 * cosSqAlpha));
lambdaP = lambda;
lambda = L + (1 – C) * f * Math.sin(alpha)
* (sigma + C * sinSigma * (cos2SigmaM + C * cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM)));
}
if (iterLimit == 0) {
return 0.0; // formula failed to converge
}
double uSq = cosSqAlpha * (a * a – b * b) / (b * b);
double A = 1 + uSq / 16384 * (4096 + uSq * (-768 + uSq * (320 – 175 * uSq)));
double B = uSq / 1024 * (256 + uSq * (-128 + uSq * (74 – 47 * uSq)));
double deltaSigma = B * sinSigma * (cos2SigmaM + B / 4 * (cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM)
– B / 6 * cos2SigmaM * (-3 + 4 * sinSigma * sinSigma) * (-3 + 4 * cos2SigmaM * cos2SigmaM)));
double s = b * A * (sigma – deltaSigma);
// double d = Number(s.toFixed(3))/1000; // round to 1mm precision
double d = s / 1000; // round to 1mm precision
return d;
}
/**
* Convert degrees to radian
*
* @param val
* Value to convert
*/
public static double degtoRad(double val) {
return val * Math.PI / 180;
}
第三种:纯球体近似计算
-
private
static
double
EARTH_RADIUS =
6378.137
;
-
private
static
double
rad(
double
d)
-
{
-
return
d * Math.PI /
180.0
;
-
}
-
-
public
static
double
GetDistance(
double
lat1,
double
lng1,
double
lat2,
double
lng2)
-
{
-
double
radLat1 = rad(lat1);
-
double
radLat2 = rad(lat2);
-
double
a = radLat1 – radLat2;
-
double
b = rad(lng1) – rad(lng2);
-
double
s =
2
* Math.asin(Math.sqrt(Math.pow(Math.sin(a/
2
),
2
) +
-
Math.cos(radLat1)*Math.cos(radLat2)*Math.pow(Math.sin(b/
2
),
2
)));
-
s = s * EARTH_RADIUS;
-
s = Math.round(s *
10000
) /
10000
;
-
return
s;
大家使用时请注意单位:km;