MATLAB牛顿迭代法
   
- 
     牛顿迭代法(用于搜索零点):
 
  
 
 通过函数
 
 
 
 f( x ) = 0 \ f(x) =0 
 
 
 
 
 
 
 
 
 f
 
 
 (
 
 
 x
 
 
 )
 
 
 
 
 =
 
 
 
 
 
 
 
 
 0
 
 
 
 
 
 的泰勒级数展开
 
 
 
 
 f( x ) = f ( x 0 ) + f ′ ( x 0 ) 1 ! ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + . . . + f ( n ) ( x 0 ) n ! ( x − x 0 ) n \ f(x) =f(x_0) +\frac {f'(x_0)} {1!}(x-x_0)+\frac {f”(x_0)} {2!}(x-x_0)^2+…+\frac {f^{(n)}(x_0)} {n!}(x-x_0)^n 
 
 
 
 
 
 
 
 
 f
 
 
 (
 
 
 x
 
 
 )
 
 
 
 
 =
 
 
 
 
 
 
 
 
 f
 
 
 (
 
 
 
 x
 
 
 
 
 
 
 
 
 
 
 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 )
 
 
 
 
 +
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1
 
 
 !
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 f
 
 
 
 
 
 
 
 
 
 
 
 ′
 
 
 
 
 
 
 
 
 
 
 (
 
 
 
 x
 
 
 
 
 
 
 
 
 
 
 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (
 
 
 x
 
 
 
 
 −
 
 
 
 
 
 
 
 
 
 x
 
 
 
 
 
 
 
 
 
 
 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 )
 
 
 
 
 +
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2
 
 
 !
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 f
 
 
 
 
 
 
 
 
 
 
 
 ′
 
 
 ′
 
 
 
 
 
 
 
 
 
 
 (
 
 
 
 x
 
 
 
 
 
 
 
 
 
 
 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (
 
 
 x
 
 
 
 
 −
 
 
 
 
 
 
 
 
 
 x
 
 
 
 
 
 
 
 
 
 
 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 )
 
 
 
 
 
 
 
 
 
 
 2
 
 
 
 
 
 
 
 
 
 
 
 +
 
 
 
 
 
 
 
 
 .
 
 
 .
 
 
 .
 
 
 
 
 +
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 n
 
 
 !
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 f
 
 
 
 
 
 
 
 
 
 
 
 (
 
 
 n
 
 
 )
 
 
 
 
 
 
 
 
 
 
 (
 
 
 
 x
 
 
 
 
 
 
 
 
 
 
 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (
 
 
 x
 
 
 
 
 −
 
 
 
 
 
 
 
 
 
 x
 
 
 
 
 
 
 
 
 
 
 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 )
 
 
 
 
 
 
 
 
 
 
 n
 
 
 
 
 
 
 
 
 
 
 
 
 
 取级数展开式的常数项和一次项:
 
 
 
 f( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) = 0 \ f(x_0) +f'(x_0)(x-x_0)=0 
 
 
 
 
 
 
 
 
 f
 
 
 (
 
 
 
 x
 
 
 
 
 
 
 
 
 
 
 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 )
 
 
 
 
 +
 
 
 
 
 
 
 
 
 
 f
 
 
 
 
 
 
 
 
 
 
 
 ′
 
 
 
 
 
 
 
 
 
 
 (
 
 
 
 x
 
 
 
 
 
 
 
 
 
 
 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 )
 
 
 (
 
 
 x
 
 
 
 
 −
 
 
 
 
 
 
 
 
 
 x
 
 
 
 
 
 
 
 
 
 
 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 )
 
 
 
 
 =
 
 
 
 
 
 
 
 
 0
 
 
 
 
 
 
 得到迭代函数:
 
 
 
 x= x 0 − f ( x 0 ) f ′ ( x 0 ) \ x=x_0 -\frac {f(x_0)} {f'(x_0)} 
 
 
 
 
 
 
 
 
 x
 
 
 
 
 =
 
 
 
 
 
 
 
 
 
 x
 
 
 
 
 
 
 
 
 
 
 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 f
 
 
 
 
 
 
 
 
 
 
 
 ′
 
 
 
 
 
 
 
 
 
 
 (
 
 
 
 x
 
 
 
 
 
 
 
 
 
 
 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 f
 
 
 (
 
 
 
 x
 
 
 
 
 
 
 
 
 
 
 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
这里是一个一元函数的简单代码:
%牛顿迭代法
function [x,n,Xn,Yn] = newiteration(fun,dfun,x0,EPS)
% fun为目标函数,dfun为目标函数的一阶导数,x0为起始点,EPS为精度
a=feval(fun,x0);
b=a+1;
n=0;
%建立画图的点
Xn = zeros(5,1);
Yn = zeros(5,1);
while(abs(a-b) >= EPS) 
        a = feval(fun,x0) ;
        df = feval(dfun,x0);
        Xn(n+1,1) = x0;
        Yn(n+1,1) = a;
        if (feval(dfun,x0) == 0)
            break
        else
            x0 = x0 - a/df;
        end
        b = feval(fun,x0);  
        n = n + 1;
end
x = x0;
调用函数:
%% 调用函数
clear all
clc
% syms x
fun=inline('x^2 - 9','x');
dfun = inline('2*x','x');
Xn = zeros(5,1);
Yn = zeros(5,1);
x0 = 1;
EPS = 0.001;
[x,n,Xn,Yn] = newiteration(fun,dfun,x0,EPS)
figure 
plot(Xn,Yn,'k-','color','red')
hold on
x = 0:0.1:7;
y = x.^2 - 9;
y2 = zeros(1,71); 
plot(x,y,'color','b')
plot(x,y2,'color','black')
运行结果:
x =3.000000001396984
n =5
    迭代过程:
    
    
    
    如果需要减少计算,可以通过将
    
     
      
       f 
′
(
x
0
)
        \ f'(x_0)
      
      
       
        
        
        
        
        
         
          f
         
         
          
           
            
             
              
              
              
               
                
                 ′
                
               
              
             
            
           
          
         
        
        
         (
        
        
         
          x
         
         
          
           
            
             
              
              
              
               
                0
               
              
             
            
            
             
            
           
           
            
             
             
            
           
          
         
        
        
         )
        
       
      
     
    
    设置为定值,收敛速度会减慢。
   
 
